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Abstract—Robust estimation methods are useful in mitigating
the impact of anomalies in clock data. Such anomalous clock
data is assumed to be well modeled by a Student’s t-distribution.
This paper derives a lower bound on the performance of the
misspecified Gaussian model using the theory of the Misspecified
Cramér-Rao bound (MCRB). The results of these derivations
are verified by analyzing the Mean Square Error (MSE) of the
misspecified Gaussian Maximum Likelihood Estimator (MLE)
when using data generated by the Student’s t-distribution.
The derived MCRB indicates a constraint on the MSE when
assuming a Gaussian distribution. The MLE for the mean of
the Student’s t-distribution is obtained with an Expectation
maximization algorithm and is shown to obtain a lower MSE
than the MCRB and hence, the misspecified estimator. This
indicates an improvement in performance if anomalous clock
data is appropriately accounted for in the statistical model.

I. INTRODUCTION

Timing requires a stable reference frame called a time
scale to avoid erroneous results in navigation and positioning
applications. The members of a swarm of satellites each
have an onboard clock that is biased compared to the others,
like the satellites in Global Navigation Satellite Systems
(GNSS). Nanosatellites would be expected to have even less
stable clocks than those used in GNSS satellites, meaning a
greater likelihood of timing errors. This can already mean a
reduction in the quality of the position determination within
a satellite swarm unless the clocks are synchronized to a
common reference that is robust to clock anomalies. If the
swarm is to operate autonomously, i.e., without the aid of
synchronization via GNSS satellites, then a reference should
be created using only the clocks in the swarm. An upcoming
scientific mission related to a swarm of nanosatellites orbiting
the moon is a prime example of an application that will need
such autonomous time synchronization [1].

When clock bias measurements contain outliers, the usual
assumptions on the statistical distribution will no longer be
valid. Specifically, the Maximum Likelihood Estimator (MLE)

for the typical Gaussian assumption is not the most efficient
in the presence of anomalies. The MLE defined for estimating
the parameters of a heavy-tailed distribution is expected to
be more robust to the impact of anomalies because the
model accounts for potential outliers. In this work, we assess
performance losses due to assuming a Gaussian distribution
when the data is contaminated by outliers.

The true distribution chosen to represent contaminated data
is the heavy-tailed Student’s t-distribution. This distribution
is selected because of existing work on the Cramér-Rao
Bound (CRB) [2] and its ability to model outliers without
assuming a shift in the mean [3]. The performance loss due
to assuming a Gaussian distribution can be analyzed using
the Misspecified Cramér-Rao Bound (MCRB), which is well-
defined for parametric models but does not explicitly address
specific cases of anomalous data [4, 5, 6, 7]. The derivations
for the misspecified model investigated should coincide with
the recent generalized results from [8], i.e., the MCRB for the
mean assuming a Gaussian distribution is identical to Gaussian
CRB, given by the variance of the data.

The rest of this paper is split into several sections that
introduce the context, the derivations, and the results. Section
II presents the clock timing data and the proposed Student’s
t-distribution for building a time scale. Section III presents
the method to obtain the MCRB and the derived closed-
form expressions for the investigated combination of true and
misspecified distributions. The results are analyzed in Section
IV, where the Mean Square Error (MSE) of the appropriate
estimators verifies the derived expression and the preferred
estimator.

II. ANOMALOUS CLOCK DATA

Only the difference in time between two satellites can be
observed through the pseudorange equations made for each
inter-satellite link. Consider a pair of satellites labeled A and B



in a constellation. A simplified representation of their pseudo-
range equation is:

ρAB(t) = R(t) + cxAB(t) + nAB(t), (1)

where R(t) is the actual geometric distance between the two
satellites at time t, c is the speed of light, xAB(t) is the
time difference between the two satellite clocks at time t,
and nAB(t) is the noise related to the measurement process
including instrument delays and possible interferences. Mea-
surements of geometric range and clock bias are obtainable by
using a two-way transfer method and the fact that ρAB = ρBA.
The measurement process can be impacted by anomalous
observations or increased measurement noise on certain links,
causing outliers in the data.

The clock biases between pairs of satellites provide ob-
servations of the onboard clock behaviors, which are used
to build a common reference time for every satellite, i.e., a
time scale. The time scale should be more stable than any
individual clock in the constellation. The stability of the clocks
is observed by comparing clock bias measurements with the
clock predictions. The predictions are made from time t−τ to
time t (where τ is the interval since the previous measurements
were available) denoted as x̂j(t|t − τ). Then, zji(t) is the
residual between the measurement associated with satellites j
and i and the prediction

zji(t) = x̂j(t|t− τ)− [xji(t) + nji(t)], (2)

where xji(t) = xj(t) − xi(t) is the actual clock bias and
measurement noise nji(t) is included due to the noise in the
pseudorange equation. The predictions use estimates of the
clock frequency and frequency drift to model the dynamics
of the clock phase since the previous measurements. Methods
of estimating the clock frequency and drift are outside the
scope of this work but are well-defined for existing time
scale solutions [9]. The predictions are made for each of the
independent clocks so that the clock residuals in (2) can be
written in the following form:

zji(t) = xi(t) + [x̂j(t|t− τ)− xj(t)]− nji(t). (3)

For a fixed clock i, the clock residuals zji(t) allow N
independent observations of the absolute time of that clock
xi(t). The MLE of xi(t) is directly related to the generation
of a time scale [10]. Each observation has some stochastic
component related to the prediction errors of the other clocks
(x̂j(t|t−τ)−xj(t)) and the noise on each of the inter-satellite
links nji(t). This definition of clock residuals is consistent
with existing time scale algorithms [9], although this work
includes a contribution of adding non-negligible measurement
noise.

Interference in the inter-satellite links and malfunctioning
clocks cause outliers in the measurements of clock biases
or clock predictions. A heavy-tailed distribution is used to
model such anomalous clock data. For example, the residuals
can follow a Student’s t-distribution with parameters ηT =
[µT (t), σ

2
T (t), ν(t)]

T [11]:

zj(t) ∼ T (µT (t), σ
2
T (t), ν(t)), (4)

where µT is the location parameter, σ2
T is the scale parameter,

and ν is the number of degrees of freedom. The dependence on
time and the central satellite i is omitted for the rest of the arti-
cle as we focus on the measurements made by a single satellite
at a single instant in time. The location parameter is linked
to the absolute time of the satellite making measurements i,
µT (t) = xi(t), and the other parameters are linked to the
dispersion of the residual data. The joint Probability Density
Function (PDF) of the univariate Student’s t-distribution for a
vector of N i.i.d. random variables z = (z1, · · · , zN )T that
are contaminated by outliers is:

p(z;ηT ) =

N∏
j=1

1

σT
√
πν

Γ(ν+1
2 )

Γ(ν2 )

(
1 +

1

ν

(
zj − µT

σT

)2
)−( ν+1

2 )

.

(5)
If the presence of the anomalies is neglected and a Gaussian
distribution is used for z then the estimate of the absolute
time does not provide a stable reference time. That is, the
clock residuals are misspecified with parameter vector θ =
[µG, σ

2
G]

T :
zj(t) ∼ N (µG, σ

2
G). (6)

The Gaussian assumption would then be an incorrect model
for the random variable, providing a misspecified PDF with
different location and scale parameters

q(z;µG, σ
2
G) =

N∏
j=1

1√
2πσ2

G

exp

[
−1

2

(
zj − µG

σG

)2
]
. (7)

The reference time computed for the constellation is expected
to lose stability in the presence of anomalies if the Gaussian
assumption is made. By deriving the MCRB for this case, the
benefits of correctly fitting a heavy-tailed distribution to the
anomalous data are revealed.

III. MISSPECIFIED CRAMÉR RAO BOUNDS

For precision in the notations, the MCRB will be presented
with subscripts to refer to the estimated parameters. For
example MCRBθ refers to the matrix that contains the bounds
(independent and joint) for each parameter in θ. The MCRB is
defined using the Kullback Leibler Divergence (KLD), which
is a statistical “distance” between the true and assumed models
as follows:

DKL(p(z;η)||q(z;θ)) = Ep

[
log

(
p(z;η)

q(z;θ)

)]
, (8)

where the subscript of Ep indicates the expectation with
respect to the true PDF p, which remains the general notation
for declaring an arbitrary true distribution. To derive the
MCRB, we must first estimate the pseudo-true parameters,
which are defined as the parameters that minimize the KLD
between the true and assumed models

θ̃p = argmin
θ

{DKL} = argmin
θ

{
Ep

[
log

(
p(z;η)

q(z;θ)

)]}
.

(9)
The subscript p indicates that the pseudo-true parameters
depend on the true distribution. The following pseudo-true



values are obtained for the true Student’s t-distribution that
models observations with outliers:

µ̃p = µT , σ̃2
p = σ2

T

ν

ν − 2
, (10)

where the full derivations are detailed in Appendix A. The
pseudo-true parameters are denoted as θ̃p = [µ̃p, σ̃

2
p]

T and the
pseudo-true scale σ̃2

p is only defined for ν > 2, just as the
variance of Student t-distributed data is undefined.

The next steps to derive the MCRB involve the computation
of two matrices:

A(θ̃p) = Ep

[(
∂2 log(q(zj ;θ))

∂θ∂θT

])
θ=θ̃p

, (11)

B(θ̃p) = Ep

[((
∂ log(q(zj ;θ))

∂θ

)(
∂ log(q(zj ;θ))

∂θT

)])
θ=θ̃p

.

(12)

Note that the above matrices only depend on the marginal
PDF of a single sample zj . Under the assumption that each
sample is i.i.d., which is relevant for clock measurements made
“simultaneously” at a single time instant, the MCRB is defined
as:

MCRBθ(p||q) =
1

N
A(θ̃p)

−1B(θ̃p)A(θ̃p)
−1. (13)

The terms in (11) and (12) are provided in Appendix B. The
results are then used to compute the MCRB of interest:

MCRBθ(pT ||q) =

 σ̃2
p

N 0

0
(

ν−1
ν−4

)
2σ̃4

p

N

 , (14)

where the bound for σ2
G is undefined for ν ≤ 4, whereas

the bound for the mean is defined as long as the variance
for the Student’s t-distribution is defined ν > 2. Hence,
estimating the scale parameter has scenarios with undefined
estimation performance and is more sensitive to the intensity
of outliers than estimating the location parameter. As expected,
the misspecified bound for σ2

G also simplifies to the Gaussian
CRB for ν → ∞ because the Student’s t-distribution converges
to a Gaussian.

For conciseness of the results, only the bounds for estima-
tion of the mean are assessed in this article with a value of
the shape parameter corresponding to significant outliers ν = 3
that cause the other bound to be undefined. This number of
degrees of freedom is not uncommon for data following a
heavy-tailed Student’s t-distribution.

In this work, the MCRB derivation has been completed for
a specific example of a real, elliptically symmetric distribution
that is compatible with modeling anomalies. The derived
MCRB is not necessarily of the same form for all other types
of heavy-tailed noises, especially those that are skewed. The
MCRB can be compared to the CRB to show the gain in MSE
that is achievable when the presence of outliers is correctly
specified. The CRB for the location parameter of the univariate
Student’s t-distribution is [2]

CRBµT
=

(
ν + 3

ν + 1

)
σ2
T

N
, (15)

Figure 1 demonstrates the equivalence of the MCRB derived
in this work and the Gaussian CRB. The bounds are displayed
such that the variance of the data is normalized for each distri-
bution. This ensures that the resulting bounds are appropriately
compared for a common dataset with an unknown statistical
model. The Gaussian CRB and the MCRB are higher than
the CRB for the Student’s t-distribution. This is because the
estimator that correctly assumes the Student’s t-distribution
reduces the impact of the outliers that cause inflated variance
in the data. Hence, correctly specifying the type of distribution
is preferred over assuming a Gaussian model if the true model
is a Student’s t-distribution. This is verified in the next section
by testing an appropriate estimator.
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Fig. 1: Comparison of the derived MCRB and relevant CRBs,
distributions are parameterized with θ = [0, 1] and η =
[0, 1/3, 3]. The scale of the Student’s t-distribution is reduced
to result in a distribution with unit variance, equivalent to
the Gaussian. The shape parameter ν = 3 symbolizes a
distribution with heavy tails but with defined variance.

IV. CONVERGENCE OF MAXIMUM LIKELIHOOD
ESTIMATOR MEAN SQUARE ERRORS TO BOUNDS

Instead of using real clock data, the analysis is conducted
with random variables produced with the given distributions,
and estimations are made under the corresponding correct
and misspecified assumptions. To validate the derived MCRB,
the performance of specific estimators is evaluated alongside
the relevant bounds. The Gaussian MLE is considered a
misspecified MLE (MMLE). The MLE for the Student’s t-
distribution is not closed-form and requires an iterative Ex-
pectation Maximization (EM) algorithm. As this paper already
includes substantial derivations related to the bounds, the
derivation of the EM algorithms is omitted. More details on
the EM algorithm for the Student’s t-distribution are available
in the literature [12].

Figure 2 shows that the MSE of an estimator assuming
a Student’s t-distribution when the data is truly Gaussian
converges to the MCRB and therefore the Gaussian CRB (blue
diamonds converge to light blue triangles). When outliers are
present and the model is truly a Student’s t-distribution, the



MSE of the Gaussian MLE (red circles) also converges to the
MCRB, verifying the derivation. According to these results,
there is no drawback in terms of MSE performance when
assuming a Student’s t-distribution to estimate the mean when
the data is nominal.

The MSE of the correctly specified MLE for anomalous data
has an MSE (black crosses) lower than the MCRB, showing
an improvement in accuracy obtained by correctly specifying
the heavy-tailed model. The MSE of the correctly specified
estimator converges to the CRB for the Student’s t-distribution
with a low number of degrees of freedom, corresponding to
large and frequent outliers. This validates the gain available
in properly accounting for anomalies in the assumed statistical
model. Since the shape parameter is linked to the weight of
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Fig. 2: MSE for each of the estimators are presented with
(p1||p2), where p1 is the true distribution and p2 is the assumed
distribution. Distributions are parameterized with θ = [0, 1]
and η = [0, 1/3, 3] and 2000 Monte Carlo iterations are used
to determine the MSE of the estimators.

the tails of the distribution, it is more difficult to converge to
the MLE for even lower values of ν. The bound and estimator
performance should still be investigated for the more extreme
cases of anomalies where the number of degrees of freedom
is less than 3. The EM algorithm does not always provide an
asymptotically efficient estimator but it is expected to perform
better than the MCRB.

V. CONCLUSION

The derived MCRB agrees with recent results in the lit-
erature, i.e., the MCRB assuming a Gaussian distribution is
identical to the Gaussian CRB. This result is verified because
the MLE that assumes a Gaussian distribution when the true
model for the data is a Student’s t-distribution obtains an MSE
equivalent to the MCRB. The estimator based on the Student’s
t-distribution achieves lower MSE than the MCRB, and hence
is preferred over the misspecified Gaussian estimator. The per-
formance of the EM algorithm should be further investigated
in future work to ensure the CRB is obtainable with a more
restrictive number of degrees of freedom. Correctly assuming a
Student’s t-distribution for data with anomalies is theoretically

proven to improve upon the Gaussian assumption. Future work
can be conducted to investigate other types of distributions
that can model anomalies and decide on a preferable model
for real clock data. It could also be interesting to investigate
the assumption of one heavy-tailed distribution when the true
distribution follows a different outlier-compatible model, e.g.,
a Gaussian mixture of normal and contaminated observations.

APPENDIX A
DERIVATION OF PSEUDO-TRUE PARAMETERS.

The pseudo-true parameters θ̃ = [µ̃, σ̃2]T are the parameters
of the assumed distribution that minimize the KLD from
the true distribution (see (9)). The cost function for finding
the pseudo-true parameters is simplified to only include the
parameters of the assumed distribution:

θ̃ = argmin
θ

{−Ep [log (q(z;θ))]} . (16)

Substituting the log-likelihood function for the Gaussian dis-
tribution leads to:

−Ep [log (q(z;θ))] =
N

2
Ep

[
log
(
2πσ2

G

)]
(17)

+
1

2

N∑
i=1

Ep

[(
zi − µG

σG

)2
]
. (18)

The mean and variance of a random variable that follows the
Student’s t-distribution are known to be:

Ep[zi] = µT , var(z) = Ep[z
2
i ]− Ep[zi]

2 = σ2
T

ν

ν − 2
. (19)

The objective function to be optimized can be written in terms
of the mean and variance of the true distribution:

−Ep [log (q(z;θ))] =
N

2
log
(
2πσ2

G

)
+

N

2σ2
G

(
var(zi) + (Ep[zi]− µG)

2
)
. (20)

The value of µG that minimizes the above cost function is
obtained when µG = Ep [zi]. Therefore,

µ̃p = Ep [zi] = µT , (21)

where the generalized derivation is in terms of Ep[·], meaning
that any true distribution p should have the same form for the
pseudo-true parameter. For the pseudo-true scale parameter,
the following result is obtained:

− ∂

∂σ2
G

Ep [log (q(z;θ))] =
N

2σ2
G

(22)

− N

2(σ2
G)

2

(
var(zi) + (Ep[zi]− µG)

2
)
. (23)

Substituting the pseudo-true parameter for µG, one obtains:

Nσ2
G

2
− N

2
var(zi) = 0. (24)

The resulting pseudo-true parameter is the sample variance of
the Student’s t-distribution:

σ̃2
p = var(zi) = σ2

T

ν

ν − 2
. (25)



With the above result, we can conclude that the mean and
variance of the Student’s t-distribution are the pseudo-true
parameters that minimize the KLD between a Gaussian distri-
bution and a Student’s t-distribution. As the derivation method
is the same for other true distributions p, the same conclusion
on the pseudo-true parameters when assuming a Gaussian
distribution can be used to simplify future derivations.

APPENDIX B
MCRB COMPUTATION

The log-likelihood function of N i.i.d. Gaussian random
variables in z = (z1, · · · , zN )T is well known, as are the
derivatives of this function. Hence, the derivatives required to
evaluate (11) and (12) are trivial. Only the moments of the
true distribution are required, which have been shown to be
related to the pseudo-true parameters. The matrix A is written
in terms of the pseudo-true scale parameter or as shown above,
the variance of the true distribution

A =

[
−
(
σ̃2
p

)−1
0

0 − 1
2

(
σ̃2
p

)−2

]
. (26)

The other matrix requires computation of higher order mo-
ments of the true distribution, i.e.,

B1,1 =

(
Ep

[(
zi − µG

σ2
G

)2
])

θ=θ̃p

, (27)

B1,2 =

(
Ep

[
−zi − µG

2(σ2
G)

2
+

1

2

(zi − µG)
3

(σ2
G)

3

])
θ=θ̃p

, (28)

B2,2 =

(
Ep

[(
− 1

2σ2
G

+
1

2

(zi − µG)
2

(σ2
G)

2

)2
])

θ=θ̃p

. (29)

The first term is already known from the computation of A,
since B1,1 = −A1,1. Due to the symmetry of the true distri-
bution and the fact that µ̃ = µT , B1,2 = B2,1 = 0. The term
B2,2 requires further derivation as it will have a unique form
for the Student’s t-distribution. Using Ep[(zi − µG)

2] = σ2
G

leads to

B2,2 =

(
− 1

4(σ2
G)

2
+

1

4(σ2
G)

4
Ep

[
(zi − µG)

4
])

θ=θ̃p

. (30)

By substituting the pseudo-true parameters in (30), the expres-
sion simplifies and we can make use of the fourth-order central
moment of the Student’s t-distribution Ep

[
(zi − µT )

4
]

=
3ν2

(ν−2)(ν−4)σ
4
T , hence:

B2,2(pT ||q) = − 1

4(σ̃2
p)

2
+

(
σ2
T

ν
ν−2

)2
4(σ̃2

p)
4

3(ν − 2)

(ν − 4)
. (31)

The above can be simplified knowing that the pseudo-true
scale is equal to the variance of the Student’s t-distribution:

B =

[(
σ̃2
p

)−1
0

0
(

ν−1
2(ν−4)

) (
σ̃2
p

)−2

]
. (32)

All terms besides B2,2 are the same in both A and B for any
other type of symmetrical true distribution when assuming the

Gaussian model. The final computation of the MCRB is a
simple matrix multiplication, where the inverse of A is trivial
because it is diagonal

MCRBθ(pT ||q) =
1

N

[
σ̃2
p 0

0
(

2(ν−1)
(ν−4)

) (
σ̃2
p

)2] . (33)
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