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Jérôme Delporte ‡, Yoan Grégoire‡, and Philippe Paimblanc∗

Toulouse, France,
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Abstract—The computation of a common reference time for
a swarm of nanosatellites is restricted by the quality and
availability of the timing measurements made with inter-satellite
links. The presence of anomalies or absence of communication
links is demonstrated to harm the stability of the time scale.
The Least Squares (LS) estimator is introduced as a method
of preprocessing measurement noise by using all available clock
comparisons in the swarm. This estimator also provides filtered
measurements when inter-satellite links are missing as long as
each satellite maintains at least one link with another. Anomaly
detection and removing corrupted satellite links are shown to
be compatible with the LS estimator to mitigate the impact of
anomalous measurements. When a satellite becomes completely
isolated for some period of time, a correction at the beginning and
the end of the isolation period are both detailed. The correction
is simple and just requires resetting the weights of missing
clocks and clocks being reintroduced. Continuity is shown to
be maintained when a large portion of clocks are removed and
later reintroduced at the same time.

Index Terms—Time scales, satellite constellation, clock com-
parisons, missing data

I. INTRODUCTION

The issues of measurement noise and missing data
are prominent when considering large-scale constellations
of nanosatellites. Autonomous synchronization in satellite
swarms is achieved by generating a time scale using only the
onboard clocks. Specifically, time scales for missions perform-
ing interferometric radio astronomy in space [1] are suscepti-
ble to timing instabilities due to corrupted or unavailable mea-
surements. In these applications, two-way transfers measure
the clock biases between satellites with non-negligible and
non-uniform measurement noise. Additionally, abrupt changes
can occur in the noise affecting certain links, resulting in
anomalous measurements or missing measurements.

A robust time scale algorithm aims to assign low weights to
anomalies, which requires some method of detecting anoma-
lies. Since anomaly detection methods are well represented in
the literature [2, 3, 4], a capacity to detect the anomalies is
assumed in this paper. The contribution of this work is to pro-
cess corrupted measurements when there is a reduced amount
of total available measurements as well as to maintain stability
in the time scale when there are missing measurements.
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The mitigation of measurement noise and anomalies is
based on the Least Squares (LS) estimator. The estimator
is introduced in Section III, where it reduces the impact
of the measurement noise and reconstructs specific missing
measurements using additional information on the satellite
time differences. The advantage of detecting and removing
anomalous inter-satellite links is also analyzed by showing the
LS estimator’s ability to reproduce the removed measurements
with reduced error compared to direct measurements.

A modification of clock weights is demonstrated to ensure
time scale continuity when clocks are removed from the
ensemble in Section IV. Isolation can be caused by com-
munication limits or the removal of associated measurements
due to an internal clock anomaly. By applying an appro-
priate correction when a clock goes missing, the time scale
remains stable for the remaining clocks. A similar correction
is required to reintroduce isolated clocks when they become
available again. Section V describes the requirements to ensure
a smooth reintroduction and how the AT1 time scale naturally
provides a solution after resetting the weights of reintroduced
clocks.

II. MEASUREMENT MODEL

Time differences between onboard clocks are measured to
construct an autonomous time scale in a swarm of nanosatel-
lites. A two-way transfer method allows simultaneous mea-
surement of the geometric range RA,B and time difference
xA,B between two satellites A and B. The resulting measure-
ments retain some noise that may be augmented by anomalies
occurring on certain communication links.

The measurements with and without measurement noise can
be defined in two vectors:

z(t) = [z1,2(t), · · · , z1,N (t), z2,3(t), · · · , z(N−1),N (t)]T , (1)

x(t) = [x1,2(t), · · · , x1,N (t)]T , (2)

where the noisy measurements zi,j(t) = xi,j(t) + ni,j(t)
include all possible unique links between satellites and their
associated noise. The noiseless measurements in x(t) are
simply the N − 1 unique and non-redundant measurements
required to compute the Basic Time Scale Equation (BTSE).



To understand how measurement noise affects the computa-
tion of a time scale, the BTSE is presented as a sum between
the standard BTSE in [5, 6] and the remaining noise:

xi,E(t) =

N∑
j=1

wj(t−τ) [x̂j,E(t)− xj,i(t)]−
N∑
j=1

wj(t−τ)nj,i(t),

(3)
where the predictions x̂j,E(t) are made using xi,E(t − τ)
and a frequency estimate yi,E(t− τ), where τ is the interval
since the previous measurements were available. The BTSE
estimates the time difference between the clock in satellite
i and the ensemble reference time. Generally, the reference
should be identical regardless of which satellite is responsible
for taking measurements. However, the remaining noise terms
nj,i(t) depend on the quality of the links between satellite i
and the rest of the swarm. Although the noise is averaged over
the N satellites, the magnitude can be amplified by anomalies
on certain links and cause jumps in the time scale for only
certain satellites.

Appropriately reducing the weights corresponding to
anomalous clocks and corrupted measurement links allows
the time scale to be robust to problems faced in the swarm.
However, this method requires anomaly detection and quantifi-
cation to adjust weights correctly. This work instead considers
the case of missing measurements as a generalization for
dealing with all types of anomalies. That is, contaminated
measurements can be removed from the data set if they are
detected, becoming missing measurements. As a result, the
proposed methodology to deal with missing communication
links can be extended to removing measurements with elevated
noise.

III. NOISE AND ANOMALY MITIGATION WITH MISSING
MEASUREMENTS

Assuming that neighboring satellites can communicate all
unique clock comparisons between them, a total of N(N −
1)/2 unique observations are available in a swarm of N
satellites. With negligible noise, N−1 unique and independent
measurements are required to generate a time scale using the
BTSE. As shown in (3), noise in the measurements introduces
uncertainty in the realization of a time scale. Since each time
difference measurement can be written as a linear combination
of the other measurements, the noise can be reduced with an
LS estimator for the N − 1 required measurements. That is,
the set of all possible clock comparisons z(t) can be written
as a set of linear equations of the required measurements x(t).
An example is written for the case of N = 4 satellites but can
be easily expanded to greater numbers of satellites

z(t) =


z1,2(t)
z1,3(t)
z1,4(t)
z2,3(t)
z2,4(t)
z3,4(t)

 =


1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1
0 1 −1


x1,2(t)
x1,3(t)
x1,4(t)

+


n1,2(t)
n1,3(t)
n1,4(t)
n2,3(t)
n2,4(t)
n3,4(t)

 ,

(4)

or otherwise,
z(t) = A(t)x(t) + n(t). (5)

The matrix A(t) depends on time because its number of
rows depends on the number of available measurements. For
example, the link between satellites 1 and 2 may not be
physically possible to obtain or it could be neglected due to a
detected anomaly. As a result, the first row would not appear
in A(t). The LS estimator is defined as:

x̂LS(t) = min
x(t)

{
∥z(t)−A(t)x(t)∥2

}
, (6)

x̂LS(t) =
(
A(t)TA(t)

)−1
A(t)T z(t) (7)

The number of measurements in z(t) will reduce for each
unavailable or removed measurement, hence, the number of
rows in matrix A(t) will also decrease. While the rank of
this matrix remains equal to N − 1, the LS estimator can
still estimate the required measurements contained in x with
residual error proportional to the number of available links.

To visualize the noise reduction achievable by the LS
estimator, a situation with N = 25 satellites is simulated to
represent a swarm of nanosatellites. All inter-satellite clock
comparisons are simulated with Gaussian zero-mean addi-
tive measurement noise with a standard deviation of 0.3 ns.
Anomalies of 10 ns are introduced at randomly chosen times
on each unique link, some links may have anomalies at the
same instant but each link only has one anomaly. Figure 1a
indicates the intensity of the measurement noise on the N −1
required measurements made with respect to satellite 1. These
measurements are sufficient to be substituted directly into (3)
but will result in an unstable reference.

The LS estimator provides estimates with a residue lower
than the noise shown in Figure 1b. The anomalous measure-
ments are not removed so that the LS estimator can be assessed
in the case of non-detection. The anomalies are seen to be
reduced because there is a sufficient number of additional
measurements available simultaneously without anomalies.

With one out of 300 possible measurements affected by an
anomaly at a single time instant, the spike due to that anomaly
is noticeably filtered. However, when one of the required
measurements, e.g., x1,2(t) has no anomaly, an anomaly
occurring on one of the redundant measurements, e.g., x3,4(t)
can cause the estimate to have a significant deviation compared
to the direct measurement at that time instant. Depending on
the magnitude of measurement noise and the magnitude of the
anomaly, either the direct measurement or the LS estimator
could be preferred.

The LS estimator still functions with certain measurements
removed. Therefore, measurements classified as anomalies
can be removed and the LS estimator can use the addi-
tional measurements to estimate those removed measurements.
Figure 1c illustrates the benefit of removing the anomalous
measurements (assuming they can be perfectly detected) by
showing that the error is reduced in comparison to the direct
measurements seen in Figure 1a.
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(a) Direct measurement noise with a single
anomaly occurring on each link at a random
point in time.
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(b) Remaining error on the LS estimator
when using all possible unique clock com-
parisons.
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(c) Remaining error on the LS estimator
when removing all measurements marked as
anomalies to estimate.

Fig. 1: Least squares estimator noise reduction for the 24 inter-satellite links measuring the time differences x1,2, · · · , x1,25

by using redundant measurements in the satellite swarm.

If an anomaly affects the clock states, the number of
measurements removed results in a reduction of the rank
of A(t). In this case, the weights and the BTSE should be
modified at the instant the measurements are removed. This is
similar to the case of dealing with completely isolated clocks,
which is explained in the next section.

IV. REMOVAL OF MISSING CLOCKS

A swarm has access to N satellites in the best-case scenario.
Considering Nm satellites can lose connection from the swarm
at time tm, how do we maintain continuity in the time scale
when only using measurements from the remaining Na = N−
Nm clocks? The change in the time scale due to having a
reduced number of clocks is defined as:

CNm(tm) = xi,E(tm)|N − xi,E(tm)|Na , (8)

where the time scale computed with the remaining Na clocks
is

xi,E(tm)|Na
=

Na∑
j=1

uj(tm − τ)rj,i(tm), (9)

and the time scale if all clocks were still available, is

xi,E(tm)|N =

Na∑
j=1

wj(tm − τ)rj,i(tm) (10)

+

N∑
j=Na+1

wj(tm − τ)rj,i(tm), (11)

which is split into two sums for the remaining and missing
clocks. Neglecting the fact that rj,i(tm) is not available for
the missing clocks, we can compute the change in the time
scale

CNm
(tm) =

Na∑
j=1

(wj(tm − τ)− uj(tm − τ)) rj,i(tm) (12)

+

N∑
j=Na+1

wj(tm − τ)rj,i(tm). (13)

The weights that were computed at the previous time instant
are used to generate the AT1 time scale, with weights calcu-
lated for the full system denoted as wj(t − τ), and weights
computed for the reduced system denoted as uj(t− τ). Since
the weights of the missing clocks were computed using the
information from the previous time epoch, they do not consider
that those clocks are missing at t = tm. Since it is simple to
detect which clocks are missing at t = tm, the weights of
those clocks can be set to zero. If the weights of the missing
clocks are set to zero then the remaining weights must be
renormalized to maintain the uniqueness of the time scale for
each clock. This means that the weights should be modified
such that

wj(tm − τ) = wj(tm − τ)

/
Na∑
i=1

wi(tm − τ) , j ≤ Na,

(14)
wj(tm − τ) = 0, j > Na.

(15)

If the above values are substituted into (13) then the expression
for the change in the time scale due to losing Nm clocks
becomes

CNm(tm) =

Na∑
j=1

(wj(tm − τ)− uj(tm − τ)) rj,i(tm). (16)

This can be set to zero, ensuring phase continuity of the
time scale by setting uj(tm − τ) = wj(tm − τ) for the
weights used to compute the reduced time scale at t = tm.
This proves why resetting the weights of missing clocks to
zero allows continuity in the time scale when the number of
available clocks changes. The above derivation can similarly
justify continuity for an increasing number of clocks in the
ensemble. However, if the weights always stay at zero for new
(or returning) clocks then the time scale will never benefit from
the increased number of clocks available.



V. REINTRODUCTION OF MISSING CLOCKS

When inter-satellite links are reintroduced into the swarm
at t = tr, the time scale must again ensure continuity to avoid
instantaneous jumps by ensuring the returning clocks have zero
weights when computing xi,E(tr). Since the weights of the
missing clocks were already reset in the past, wj(tr − τ) = 0
is guaranteed for returning clocks j and xj,E(tr) is computed
using the non-returning clocks. At the time instant after the
clocks have returned (t = tr+τ), the new clock measurements
were still effectively “missing” at the previous epoch but there
is some information provided by xj,E(tr).

To profit from the new measurements, the weights must
eventually be non-zero, but they must not change rapidly
because that will cause a jump in the time scale. Hence,
a gradual reintroduction of the weights for the new clocks
is used after the first reset at t = tr. The AT1 time scale
algorithm is compatible with this requirement thanks to an
exponential filter that gradually increases weights over time
according to an optimally chosen time constant. This time
constant defines the amount of time before the reintroduced
clocks are capable of contributing to the time scale again.

Figure 2 illustrates the resulting time scale with and without
the appropriate weights being reset at the required times.
AT1R is used to refer to the AT1 time scale using reset.
The time scale is computed with 10 out of 50 total simulated
clocks being removed at once. All of the isolated clocks are
reintroduced simultaneously after 50 minutes. This is expected
in the application of a swarm of satellites. The results prove
that continuity is still maintained with something as simple as
forcing the weights to zero at the appropriate times.

Although continuous, the overall stability of the time scale
is still reduced compared to the case with no isolated clocks
(see the dashed blue line with crosses in Figure 2). This is
unavoidable because the optimal reduction in Allan deviation
(ADEV) for a time scale is proportional to the number of
clocks. The ADEV is estimated using simulated samples over
20000 seconds with a data rate of 10 seconds. This means that
the outage period of 3000 seconds for the missing clocks has
a marginal effect on the overall ADEV. If the ADEV were
instead estimated over only the duration of isolation, the time
scale stability would be degraded to the achievable level for
the available clocks.

VI. CONCLUSION AND FUTURE WORK

Given enough linearly independent measurements, the pro-
posed LS estimator can estimate the necessary N − 1 mea-
surements to compute each satellite’s time difference from
the common time scale. With sufficient inter-satellite links,
the effects of noise and anomalies in direct measurements are
reduced in the LS estimates. This is still true even if certain
inter-satellite links are broken because the remaining links
provide redundancy. Assuming perfect detection of anomalies
and removing the affected measurements, the resulting jumps
can be eliminated and the removed measurements can still be
estimated with the LS estimator. Specific anomaly detection
algorithms should be investigated in future work to test the
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Fig. 2: Discontinuities in the time scale phase (top) appear
when weights are not reset at tm = 5000 s or tr = 8000 s.
As a result, the frequency stability is reduced, evidenced by
a higher Allan deviation for the resulting time scale without
reset (bottom).

corresponding benefits alongside the LS estimator and redun-
dant measurements. The method of resetting weights maintains
continuity in the time scale when clocks become isolated due
to broken communication links or removed due to anomalies.
That being said, the reintroduction of missing clocks requires
a gradual increase from the reset weights like that offered in
the exponential filter of the AT1 algorithm.
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