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ABSTRACT

The derivation of estimation lower bounds is paramount to design
and assess the performance of new estimators. A lot of effort has
been devoted to the joint distance-velocity estimation problem,
but very few works deal with acceleration, being a key aspect in
several high-dynamics applications. Considering a generic band-
limited signal formulation, in this contribution we derive a new
closed-form Cramér-Rao bound (CRB) expression for joint time-
delay/Doppler/acceleration estimation. This new formulation, espe-
cially easy to use, depends only on the baseband signal samples, and
can be exploited for several purposes including estimator assessment
(i.e., for signal design or to derive performance loss metrics with
respect to the best (lowest) CRB). These results are illustrated and
validated with two representative band-limited signals, namely, a
GPS L1 C/A signal and a linear frequency modulated chirp signal.

Index Terms— Cramér-Rao bound, delay/Doppler/acceleration
estimation, band-limited signals, maximum likelihood.

1. INTRODUCTION

Deterministic parameter estimation appears in a plethora of applica-
tions, such as radar and navigation [1–5], being a key stage of the
receiver. Different estimation techniques exist and a common goal
for estimator design is to assess the best achievable performance,
and information which is brought by lower performance bounds [6].
In the large sample regime [7] or in the large signal-to-noise ra-
tio (SNR) of the Gaussian conditional model [8, 23], accurate es-
timation of the minimum achievable mean squared error (MSE) is
given by deterministic Cramér-Rao Bounds (CRB). Several time-
delay and Doppler estimation CRB expressions have been already
derived for different applications [9–13]. In addition, easy-to-use
delay/Doppler closed-form CRB expressions, which only depend on
the baseband signal samples, have been recently derived and ex-
ploited in [14–17]. However, even if acceleration plays an important
role in several high-dynamics applications, a compact CRB in the
vein of [14] including acceleration estimation in addition to time-
delay and Doppler, for a generic band-limited signal, is not available
in the literature.

Indeed, in certain applications, adding acceleration estimation
in the first receiver stage may improve the overall estimation perfor-
mance (i.e., notice that the assumption of constant Doppler during
the observation time was done in the contributions hereabove). On
the other hand, because an additional parameter needs to be esti-
mated, the resulting bounds are expected to be higher than the ones
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found in [14] for joint delay and Doppler estimation. In this contri-
bution, we provide a new closed-form CRB expression for the joint
delay/Doppler/acceleration estimation problem, for generic band-
limited signals with given length and energy, of broad interest for
several applications. Such CRBs are validated in two different ways:
i) analysing the correct fit of the ambiguity function with its second
order Taylor expansion, and ii) the convergence of the Maximum
Likelihood Estimator (MLE) to the CRB at high SNR. Notice that
because the proposed expressions depend only on the baseband sig-
nal samples, the CRBs can be easily implemented, therefore being
a fundamental tool to compare the performance brought by different
signals (i.e., as done in [15, 16] for Global Navigation Satellite Sys-
tems (GNSS) signals), as well as for signal design. These new CRB
results are illustrated and validated with two representative band-
limited signals, namely, a GPS L1 C/A signal and a linear frequency
modulated chirp signal.

2. SIGNAL MODEL

To define the estimation problem of interest, consider the line-of-
sight transmission of a band-limited signal s(t) with sampling fre-
quency Fs over a carrier with frequency fc (wavelength λc = c/fc),
from a transmitter T at position pT (t) to a receiver R at position
pR (t), expressed both in time and frequency as,
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N′2∑

n=−N′1

s

(
n

Fs

)
sinc

(
πFs

(
t− n

Fs

))
, (1a)

s (f) =
1

Fs

N′2∑
n=−N′1

s

(
n

Fs

)
e
−j2πn f

Fs ,
−Fs

2
≤ f ≤ Fs

2
. (1b)

The received signal at the output of the receiver antenna in the time
domain is xA(t) = αAe

j2πfc(t−τ0(t;η))s (t− τ0(t;η)) + nA(t),
with η = [τ , b, d]T the unknown parameters to be estimated (i.e.,
related to the delay, Doppler and acceleration, respectively), nA(t)
a zero-mean white complex circular Gaussian noise, and αA an am-
plitude factor that depends on signal power, polarisation vectors, an-
tenna gains, and antenna [18, 19].

The radial displacement between transmitter and receiver (pTR)
is proportional to the transmitter to receiver signal time-delay (i.e.,
pT (t) = pT + vT t + 1

2
aT t

2 and pR(t) = pR + vRt + 1
2
aRt

2).
However, notice that the perceived signal delay at the receiver is
affected by the relative motion between both transmitter and re-
ceiver (i.e., Doppler effect). To correctly represent the shifted
signal delay for high-dynamic receivers, in addition of the Doppler
effect, we take into account the relative acceleration. The dis-
tance between two bodies with a relative acceleration depends



on time, velocity, and acceleration and is obtained from integrat-
ing the acceleration with respect to time twice. The equation
which describes the distance travelled by the transmitted sig-
nal is then pTR , ‖pT (t− τ0 (t))− pR (t)‖ = cτ0 (t) '
(pT −pR) + vt+ at2

2
, that is, a second order approximation. Then,

τ0 (t) ' τ + bt+ dt2, τ = pT−pR
c

, b = v
c
, d = a

2c
and c the speed

of light. For simplification on the calculations required for the CRB,
the signal model is considered to be narrowband, that is, the impact
of the parameters linked to the Doppler shift b and the acceleration d
is negligible in the received baseband signal, s(t−τ0(t)) ' s(t−τ).
For short observation times, a good approximation of the baseband
output of the receiver’s Hilbert filter is [20],

a(t;η) = e−j2πfc(b(t−τ)+d(t−τ)
2)s (t− τ) , (2)

x (t) = xA (t) e−j2πfct = αa(t;η) + n (t) , (3)

with f ∈
[
−Fs

2
, Fs

2

]
, Fs ≥ B the Hilbert filter bandwidth, n(t) a

complex white circular Gaussian noise within this bandwidth with
unknown variance σ2

n, and α = αAe
−j2πfcτ . The discrete vector

signal model is built from N = N1 + N2 + 1 (N1/Fs � N ′1/B,
N2/Fs � N ′2B) samples at Ts = 1/Fs,

x = αa(η) + n = ρejϕa(η) + n, (4)

with (for N1 ≤ k ≤ N2) signal samples x = (. . . , x (kTs) , . . .)
>,

noise samples n = (. . . , n (kTs), . . .)
>, baseband signal sam-

ples s(τ) = (. . . , s (kTs − τ) , . . .)> and from (2) we have that
a(η) = (. . . , s(kTs − τ)e−j2πfc(b(kTs−τ)+d(kTs−τ)2), . . .)>.
The unknown deterministic parameters can be gathered in vector
ε =

(
σ2
n, ρ, ϕ, τ , b, d

)>, with α = ρejϕ (ρ ∈ R+, 0 ≤ ϕ ≤ 2π).
In the sequel we focus on the CRB associated to the estimation of η
because they are the main parameters of interest. In this contribu-
tion a single line-of-sight transmission is considered, however, (4)
can also be obtained if one considers transmission via diffraction,
reflexion or a combination of the three (multipaths) [2, 19].

3. BACKGROUND

Let S = span (A) be the linear span of the set of the column vectors
of matrix A, ΠA = A

(
AHA

)−1
AH is the orthogonal projection

over S, and Π⊥A = I−ΠA. The CRB is given by the inverse of the
Fisher Information Matrix (FIM), F[τ,b,d]|ε

(
ε0
)
, with ε0 a selected

value of ε. If we define,
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(5)
the FIM associated to the problem of interest is given by [21, 22]

Fη|ε (ε) =
2|α|2

σ2
n

<{Φ(η)} =
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 , (6)

and the CRB matrix can be computed as CRBη|ε = F−1
η|ε. More-

over, (6) can be directly obtained through the following formula
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where the partial derivative vector can be expressed in terms of the
following matrices:

∂a(t;η)

∂η
= −Qϑe−jωc(b(t−τ)+d(t−τ)2), (8)

with

Q =

−jωcb −j2ωd 1 0
0 jωc 0 0
0 0 0 jωc

 ,ϑ =
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(t− τ)2s(t;η)

 ,
(9)

and s(1) (t) = ds(t)
dt

. Representing the signal with discrete time
values allows the products to be expressed as sums,
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3.1. Maximum Likelihood Estimation and Ambiguity Function

Considering the signal model (4), the MLE is defined as [22],

η̂ = arg min
η

{
xHΠ⊥a(η)x

}
= arg max

η
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∣∣2

a(η)Ha(η)

}
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=
min(N1,N2)→∞

arg max
η
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and the maximum SNR at the output of the MLE matched filter is,

SNRout =
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Last, the corresponding ambiguity function is given by [19],

Ξ
(
η;η0) =

∣∣∣∣∣ a (η)H a
(
η0
)
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which can be approximated by its 2nd order Taylor expansion as,

Ξ
(
η0 + dη;η0) ' 1− 1

2
dηT
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Φ
(
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)}

‖a (η0)‖2

)
dη, (15)

where the second term is directly related to the FIM (6), and there-
fore to the CRB.



4. NEW CLOSED-FORM JOINT TIME-DELAY, DOPPLER
AND ACCELERATION ESTIMATION CRB

Taking s(t) as a band-limited signal, and using the Nyquist-Shannon
theorem, we have that [17],

lim
N1→−∞,N2→∞

<{Φ(η)} = Fs<
{

QWQH − (Qw)(Qw)H

w1

}
,

(16)
with w = [w1, w2, w3, w4]> and

W =

w1 w∗2 w∗3 w∗4
w2 W2,2 W ∗3,2 W ∗4,2
w3 W3,2 W3,3 W ∗4,3
w4 W4,2 W4,3 W4,4


with

w1 =

∫ ∞
−∞
|s(t;η)|2 dt, w2 =

∫ ∞
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(t− τ) |s(t;η)|2 dt,
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The previous analytic expressions were already computed as a func-
tion of the signals samples in [17]. To obtain the missing closed-
form expressions of W4,2 and W4,4, the integral equations are eval-
uated with the use of Fourier transform properties: s(t) 
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where D = diag([N1, N1 + 1, ..., N2 − 1, N2]) and
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Finally, after tedious calculus, the terms in (16) are obtained by tak-
ing the limit, as shown in the following for the first term,

lim
N1→−∞
N2→∞

<{Φ1,1 (η)} = Fs
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 .
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The same limit must be taken for all following equations but is omit-
ted for simplicity,
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Finally, the CRB matrix can be computed by inverting the FIM, and
the corresponding CRB values for the time-delay, Doppler and ac-
celeration can be identified from the diagonal values,

CRBη|ε =
σ2
n

2|α|2<{Φ(η)}−1 (22)

It is worth noting that (22) does not depend on delay or Doppler (τ
and b), but it does depend on the acceleration parameter (d). For
higher acceleration values, the CRB cannot neglect this term when
assessing the asymptotic precision of estimation of τ and b, which
now depends on d. This is also why d must be accounted for in the
MLE matched filter ((11) and (12)) when acceleration increases.

5. VALIDATION AND DISCUSSION

In order to assess the validity of the new CRB expressions we con-
sider two representative band-limited signals: i) a GPS L1 C/A sig-
nal with PRN code length 1023 chips, Fs = 1.023 MHz, and a
duration of 10 ms (i.e., 10 consecutive PRN), and ii) a Linear Fre-
quency Modulated (LFM) chirp signal, with a bandwidth equal to
half the sampling frequency (Fs = 1.023 MHz) and duration 10 ms.

First, we want to assess if the ambiguity function and its 2nd or-
der Taylor approximation coincide, which is a proof of exactness of
the proposed CRBs. In that perspective we consider the GPS L1 C/A
signal, and a scenario where only the acceleration parameter d is to
be estimated (i.e., known delay and Doppler). In this case, the sig-
nal model simplifies to a(t;η) = s(t)e−jωcdt

2

, and the FIM can be
directly computed using (21c). This result is illustrated in Figure 1,
with a clear good fit between the ambiguity function and its approx-
imation for a wide range of acceleration values around the true one,
which is given by the maximum of the ambiguity function. This im-
plies that the terms of the FIM in (21c) (e.g., W4,4) are correct. This
is a first proof of exactness of the CRB, but the complete estimation
problem still needs to be characterized.

Since (4) belongs to the class of conditional signal models [23],
the MLE converges to the CRB at high SNR [8], a property which
can be used as an alternative way to confirms the CRB validity. Then,
a second experiment with the signal model in (2) (i.e., τ , b and d
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Fig. 1: Ambiguity function and second order Taylor approximation
for a GPS L1 C/A band-limited signal.

are unknown parameters that need to be estimated), and for the two
band-limited signals of interest, is carried out. The CRB and the
corresponding MLE (10), obtained for 1000 Monte Carlo iterations
and a normalized noise are shown in Figure 2. As expected, the
MLE for the different parameters of interest converges to the corre-
sponding CRB after a certain threshold region. The CRB and MLE
behaviour in the different plots of Figure 2 confirm the exactness of
the proposed CRB (21a)-(21f). Notice that the convergence thresh-
old is slightly different for both signals. This threshold is equal to
17 dB for the GPS signal, and 15 dB for the LFM signal, in terms
of the SNR at the output of the MLE matched filter. Apart from this
slightly different asymptotic region of operation, the performance
obtained with both signals is equivalent. In any case, both the good
fit of the ambiguity function and the MSE of the MLE confirm the
validity and exactness of the new closed-form CRB expressions for
joint time-delay, Doppler and acceleration estimation.

6. CONCLUSION

In this contribution we derived novel CRB closed-form expressions
for delay, Doppler and acceleration estimation. These expressions
are valid for a generic narrowband band-limited signal, and therefore
can be exploited in several applications such as navigation, radar,
GNSS reflectometry or space exploration, to name a few. An ap-
pealing advantage is that the new CRB expressions only depend on
the baseband signal samples, which make them especially easy to
use. Results were illustrated using two representative band-limited
signals, namely, a GPS L1 C/A signal and a LFM chirp signal. The
validity of the new CRBs was demonstrated by comparing them with
the corresponding MSE of the new MLE, as well as with the com-
parison of the ambiguity function and its second order Taylor ap-
proximation. Both results confirmed the validity and exactness of
the proposed CRBs.
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