
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/361915394

Accounting for Acceleration – Signal Parameters Estimation Performance Limits

in High Dynamics Applications

Article  in  IEEE Transactions on Aerospace and Electronic Systems · July 2022

DOI: 10.1109/TAES.2022.3189611

CITATIONS

2
READS

104

4 authors:

Some of the authors of this publication are also working on these related projects:

Performance bounds for misspecified models View project

Hamish McPhee

Telecommunications for Space and Aeronautics

3 PUBLICATIONS   5 CITATIONS   

SEE PROFILE

Lorenzo Ortega Espluga

Institut Polytechnique des Sciences Avancées

43 PUBLICATIONS   127 CITATIONS   

SEE PROFILE

Jordi Vilà-Valls

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

129 PUBLICATIONS   815 CITATIONS   

SEE PROFILE

E. Chaumette

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

174 PUBLICATIONS   1,039 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Lorenzo Ortega Espluga on 12 July 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/361915394_Accounting_for_Acceleration_-_Signal_Parameters_Estimation_Performance_Limits_in_High_Dynamics_Applications?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/361915394_Accounting_for_Acceleration_-_Signal_Parameters_Estimation_Performance_Limits_in_High_Dynamics_Applications?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Performance-bounds-for-misspecified-models?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamish_Mcphee?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamish_Mcphee?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Telecommunications_for_Space_and_Aeronautics?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamish_Mcphee?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-Ortega-Espluga?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-Ortega-Espluga?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institut_Polytechnique_des_Sciences_Avancees?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-Ortega-Espluga?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi-Vila-Valls?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi-Vila-Valls?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institut-Superieur-de-lAeronautique-et-de-lEspace-ISAE?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi-Vila-Valls?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/E-Chaumette?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/E-Chaumette?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institut-Superieur-de-lAeronautique-et-de-lEspace-ISAE?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/E-Chaumette?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-Ortega-Espluga?enrichId=rgreq-b3dbd19240a5fd7eb3ba848d42117eb4-XXX&enrichSource=Y292ZXJQYWdlOzM2MTkxNTM5NDtBUzoxMTc3MDQ2NTc5NDQ5ODYyQDE2NTc2NDExODE4MzU%3D&el=1_x_10&_esc=publicationCoverPdf


SUBMITTED TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 1

Accounting for Acceleration – Signal Parameters
Estimation Performance Limits in High Dynamics

Applications
Hamish McPhee, Lorenzo Ortega, Jordi Vilà-Valls, Senior Member, IEEE, Eric Chaumette, Member, IEEE

Abstract—The derivation of estimation lower bounds is
paramount to designing and assessing the performance of new
estimators. A lot of effort has been devoted to the range-velocity
estimation problem, a fundamental stage on several applications,
but very few works deal with acceleration, being a key aspect
in high dynamics applications. Considering a generic band-
limited signal formulation, we derive a new general compact
form Cramér-Rao bound (CRB) expression for joint time-delay,
Doppler stretch, and acceleration estimation. This generalizes and
expands upon known delay/Doppler estimation CRB results for
both wideband and narrowband signals. This new formulation,
especially easy to use, is created based on baseband signal
samples, making it valid for a variety of remote sensors. The
new CRB expressions are illustrated and validated with repre-
sentative GPS L1 C/A and Linear Frequency Modulated (LFM)
chirp band-limited signals. The mean square error (MSE) of a
misspecified estimator (conventional delay/Doppler) is compared
with the derived bound. The comparison indicates that for some
acceleration ranges the misspecified estimator outperforms a well
specified estimator that accounts for acceleration.

Index Terms—Cramér-Rao bound, delay/Doppler/acceleration
estimation, signal parameter estimation, band-limited signals,
maximum likelihood, GNSS, radar.

I. INTRODUCTION

RANGE and velocity estimation appear in a plethora of
applications such as navigation, radar, or remote sensing,

being a key stage of the receiver [1]–[4]. In addition, phase
estimation can be instrumental in precise Global Navigation
Satellite Systems (GNSS) navigation [3], which is directly
linked to the underlying delay/Doppler estimation. Tracking
of some complicated systems may require compensation of
Doppler variation over time. An example of such systems
is seen in the micro-Doppler effect investigated by [5] for
vibrating targets. In high dynamics scenarios, acceleration of
the target similarly causes an additional shift in the Doppler
frequency. Traditional delay/Doppler synchronization may not
be enough to achieve a good performance in these scenarios.
This performance degradation also impacts carrier phase-based
applications. Although a lot of effort has been devoted to
range-velocity (i.e., delay/Doppler) estimation, very few works
deal with acceleration, which may be fundamental when local-
izing, tracking, or positioning highly dynamic targets/vehicles.

H. McPhee is at TéSA, Toulouse, France, email:
hamish.mcphee@tesa.prd.fr; L. Ortega is at IPSA, Toulouse, France, e-mail:
lorenzo.ortega@ipsa.fr; J. Vilà-Valls and E. Chaumette are with University of
Toulouse, ISAE-Supaero, Toulouse, France, e-mail: {name.surname}@isae-
supaero.fr; This research was partially supported by TéSA and the DGA/AID
projects (2019.65.0068.00.470.75.01, 2021.65.0070.00.470.75.01).

The main goal of this contribution is to obtain meaningful
insights on the estimation performance under high dynamics,
correctly accounting for acceleration. The ideal performance
in the mean square error (MSE) sense is given by the Cramér-
Rao lower bound (CRB) [6], which gives an accurate MSE
estimation of the maximum likelihood estimator (MLE) in the
asymptotic region, i.e., the large sample and/or high signal-to-
noise (SNR) regimes of the Gaussian conditional signal model
(CSM) [7], [8].

Several CRB expressions have been derived for the delay,
Doppler, and phase estimation under the narrowband signal
assumption [1], [9]–[13], but in some applications, the com-
pression or stretch on the envelope of the received signal
cannot be ignored [14]. The latter has been analyzed for the
wideband range/Doppler MLE and its associated ambiguity
function [15]–[17]. The derivations of CRBs under the wide-
band signal assumption have received fewer attention [18]–
[23]. The limitations of the wideband range/velocity CRBs in
the literature have been recently overcome in [24], leading to a
general compact CRB expression for amplitude, phase, delay,
and Doppler stretch estimation. It is sensible to expect that
acceleration plays an important role in several high dynamics
applications. Yet a compact CRB in the vein of [10], [24]
including delay, Doppler, and acceleration estimation, for a
generic band-limited signal, is not available in the literature.
This prevents analysis of the impact of acceleration on es-
timation performance in the asymptotic region. On the one
hand, in certain applications, adding acceleration estimation in
the first receiver stage may improve the overall performance,
e.g., targets with highly varying Doppler. On the other hand,
adding a parameter to be estimated almost always leads to
CRBs higher than those found in [10], [24] for delay/Doppler
estimation. This leaves a chance that the performance of an
MLE converging to the newly derived CRB could be worse
than the performance found for delay/Doppler MLEs, which
assume a zero acceleration. From a theoretical perspective
[25], neglecting acceleration results in a mismatched model
(a.k.a. misspecified model) of the signal and a mismatched
delay/Doppler estimator. Therefore, the performance of the
mismatched/misspecified estimation is used as a comparison
to conclude whether including acceleration estimation should
be preferred.

The main contributions of this article are: i) extend the
recent narrowband CRB results in [10], to include acceler-
ation; ii) extend the recent wideband CRB results in [24], to
include acceleration. In both cases several new terms appear
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which can not be guessed from existing expressions in the
literature; iii) application of proposed CRBs for assessing
the performance obtained through the use of optimal de-
lay/Doppler/acceleration estimation in high dynamic scenar-
ios; and iv) assess the performance of the misspecified de-
lay/Doppler estimator to determine regions of operation where
the new bound represents the preferred estimator (the high
dynamics region). The new theoretical results are validated
for two representative scenarios: GPS L1 C/A and Linear
Frequency Modulated (LFM) chirp band-limited signals.

It is worth pointing out that there exist some inherent
differences between both GNSS and radar applications. While
radar systems may not be coupled with other sensors and there-
fore the analysis provided in this article brings new insights
on the overall system performance, in the GNSS case it is
common practice to have additional aiding sensors, i.e., such as
inertial navigation systems (INS) [3, Ch. 28], if the receiver is
expected to suffer high dynamics. Indeed, GNSS/INS coupling
[26] was proposed to address high dynamics situations, and
more specifically ultra-tight architectures where the INS is
used to steer the GNSS receiver tracking loops, reducing the
parameter dynamics that such loops have to track. Another
alternative is the use of high-order tracking loops able to lock
to rapidly varying synchronization parameters. Despite these
alternatives available in the GNSS literature, the theoretical
tools derived in this article bring meaningful insights: i) on the
impact of high dynamics at the GNSS acquisition stage (e.g.,
re-acquisition), ii) in the case of extended integration schemes,
high-sensitivity receivers [27, Ch. 18] or GNSS reflectometry
[28], where the apparent acceleration may be much larger than
under nominal conditions, iii) to provide an initial performance
characterization of high-order tracking loops (i.e., high-order
sequential maximum likelihood estimators), and iv) for the
design of low cost receivers and/or small platforms not able
to integrate navigation grade INS.

Notation: Scalar values are defined in italic (𝑎), vector
in bold lower-case (a), and matrices bold upper-case (A).
| |x| | =

√︃∑
𝑥2
𝑖

is the L2 norm of vector x with 𝑖 elements
and |𝑥 | gives the absolute value of the scalar 𝑥. The transpose
operation is indicated by the superscript 𝑇 , the conjugate
transpose by the superscript 𝐻 , and the conjugate operation by
the superscript ∗. I𝑛 represents the identity matrix of dimension
𝑛, 𝑅𝑒{·} and 𝐼𝑚{·} refer to the real part and the imaginary
part. The rectangular unit step function is represented by:
1[− 𝐵

2 , 𝐵2 ] ( 𝑓 ) limited by bandwidth 𝐵.

II. SIGNAL MODEL

The parameters being estimated are linked to the positioning
of a moving target, so the variables linked to position and
motion should be defined. The vectors p, v, a are defined for
the instantaneous position, velocity, and acceleration, respec-
tively, all relative to the origin of a Reference Frame (the Earth
Centered Reference Frame for instance in GNSS).

To define the estimation problem of interest, consider the
line-of-sight (LOS) transmission of a band-limited signal 𝑠(𝑡)
(bandwidth 𝐵) with sampling frequency 𝐹𝑠 over a carrier with
frequency 𝑓𝑐 (wavelength 𝜆𝑐 = 𝑐/ 𝑓𝑐), from a transmitter T at

Fig. 1. The relative, line-of-sight acceleration and velocity that contribute to
the Doppler effect, and the specific parameters that can be estimated.

position p𝑇 (𝑡) = p𝑇 (0)+v𝑇 𝑡+ 1
2a𝑇 𝑡2 to a receiver R at position

p𝑅 (𝑡) = p𝑅 (0) + v𝑅𝑡 + 1
2a𝑅𝑡

2. Note the initial position being
used here is a reference point for a general derivation of how
the acceleration effects the signal model, in the true tracking
case, the terms p𝑇 (0) and p𝑇 (0) should be replaced with
the previous known (or estimated) positions throughout the
tracking loop. The standard baseband signal with bandwidth
related to the sampling frequency by 𝐵 ≤ 𝐹𝑠 , can be expressed
in time and frequency as,

𝑠 (𝑡) =
𝑁 ′

2∑
𝑘=−𝑁 ′

1

𝑠

(
𝑘

𝐹𝑠

)
sinc

(
𝜋𝐹𝑠

(
𝑡 − 𝑘

𝐹𝑠

))
⇌ (1a)

𝑠 ( 𝑓 ) = 1
𝐹𝑠

𝑁 ′
2∑

𝑘=−𝑁 ′
1

𝑠

(
𝑘

𝐹𝑠

)
𝑒
− 𝑗2𝜋 𝑘

𝐹𝑠 × 1[− 𝐵
2 , 𝐵2 ] ( 𝑓 ) (1b)

where ⇌ refers to the Fourier transform to the frequency
domain, and 𝑁 ′

1, 𝑁 ′
2 ∈ Z, as these values approach infinity the

equations give an exact representation of the analog signal in
a discretized formulation. Now the signal defined in equation
(1a) takes some time (𝜏) to arrive at the receiver after being
transmitted. This delay is the first parameter to be estimated,
varying over time and depending on the LOS motion between
the transmitter and receiver to give a function of time for the
actual delay 𝜏𝐴(𝑡). The usual assumption of zero acceleration
gives a dependence only on the Doppler (𝜏𝐴(𝑡) = 𝜏 + 𝑏𝑡); this
work will show how a non-zero acceleration is included for
our investigation. The radial displacement between transmitter
and receiver is proportional to the transmitter to receiver signal
time-delay, which is affected by the relative motion between
both transmitter and receiver. In high dynamics receivers,
in addition to the Doppler effect, we take into account the
relative acceleration. Figure 1 below indicates the appropriate
components of the target’s velocity and acceleration that cause
the shifting of the signal. In this case, the receiver can be
on the target itself as is the case for GNSS tracking or at
the ground radar. The components v𝑟𝑒𝑙 and a𝑟𝑒𝑙 represent
the radial components relative to the signal source. They are
projections of the target’s actual dynamics (v, a) onto the LOS
vector between transmitter and receiver. We define 𝜏 as the
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initial absolute delay between signal transmission and receival
for a perfectly stationary transmitter and target, neglecting
additional propagation delay due to the atmosphere. The ideal,
actual time between transmission and receival is then shifted
only according to the Doppler and acceleration over a certain
time, given by (3). This develops from the equation which
describes the distance traveled by the transmitted signal

p𝑇𝑅 ≜ ∥p𝑇 (𝑡 − 𝜏𝐴 (𝑡)) − p𝑅 (𝑡)∥ = 𝑐𝜏𝐴 (𝑡; 𝜼)

≃ ||p𝑇 (0) − p𝑅 (0) | | + v𝑟𝑒𝑙𝑡 +
a𝑟𝑒𝑙𝑡2

2
, (2)

with 𝜏𝐴 (𝑡; 𝜼) ≃ 𝜏 + 𝑏𝑡 + 𝑑𝑡2,

𝜏 =
| |p𝑇 (0) − p𝑅 (0) | |

𝑐
, 𝑏 =

| |v𝑟𝑒𝑙 | |
𝑐

, 𝑑 =
| |a𝑟𝑒𝑙 | |

2𝑐
(3)

that is, a second-order approximation, with 𝑐 the speed of light.
The set of scalar parameters is 𝜼 = [𝜏, 𝑏, 𝑑]𝑇 , each term being
considered as constant over the duration of the observation
period. This is representative of performing an estimation of
the parameters at an instantaneous, initial state in time, i.e. an
acquisition 𝜏 = 𝜏𝐴(0), 𝑏 = 𝑏0 and 𝑑 = 𝑑0. The performance
of estimation for this acquisition is a good baseline for the
analysis of including acceleration estimation in general cases
as they can be represented by consecutive estimations of the
instantaneous parameters.

The complex analytic signal at the antenna output is then
a function of the actual delay and modulated by the carrier
wave, which is also shifted through multiplication with the
Doppler and acceleration parameters.

𝑥𝐴(𝑡) = 𝛼𝐴𝑒
− 𝑗2𝜋 𝑓𝑐 (𝑡−𝜏𝐴 (𝑡;𝜼)) 𝑠 (𝑡 − 𝜏𝐴(𝑡; 𝜼)) + 𝑛𝐴(𝑡), (4)

with 𝑛𝐴(𝑡) a zero-mean white complex circular Gaussian
noise, and 𝛼𝐴 an amplitude factor that depends on the signal
power, polarisation vectors, and antenna gains [29].

In contrast to the standard narrowband signal assumption
[1], [9]–[13], where the Doppler effect on the baseband
signal is not considered and amounts to a frequency shift,
i.e., 𝑠(𝑡 − 𝜏𝐴(𝑡)) ≃ 𝑠 (𝑡 − 𝜏), we consider the wideband
assumption with both delay and dilatation into the baseband
signal model, 𝑠(𝑡−𝜏𝐴(𝑡)) ≃ 𝑠 ((1 − 𝑏) (𝑡 − 𝜏)). The expression
in (4) is simplified through IQ demodulation in the receiver
that uses a Hilbert filter. For short observation times, a good
approximation of the Hilbert filter output is found in [30]
leading to the simplified model of the carrier’s shift due to
delay, Doppler, and acceleration in equation (6),

𝑥 (𝑡) = 𝑥𝐴 (𝑡) 𝑒− 𝑗2𝜋 𝑓𝑐𝑡 = 𝛼𝑎(𝑡; 𝜼) + 𝑛 (𝑡) , (5)

𝑎(𝑡; 𝜼) = 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) 𝑠 ((1 − 𝑏) (𝑡 − 𝜏)) , (6)

with 𝑓 ∈
[
−𝐹𝑠

2 ,
𝐹𝑠

2

]
, 𝐹𝑠

2 ≥ max
𝑏

{
𝐵
2 (1 − 𝑏)

}
, 𝑛(𝑡) a complex

white circular Gaussian noise within this bandwidth with un-
known variance 𝜎2

𝑛, and 𝛼 = 𝛼𝐴𝑒
− 𝑗2𝜋 𝑓𝑐 𝜏 (1+𝑏+𝑑𝜏) . Propagation

time-delay and Doppler dilation effects are detailed by:

𝑠 (𝑡; 𝜼) = 𝑠 ((1 − 𝑏) (𝑡 − 𝜏)) ⇌ 𝑠 ( 𝑓 ; 𝜼) =
1

1 − 𝑏
𝑠

(
𝑓

1 − 𝑏

)
𝑒− 𝑗2𝜋 𝑓 𝜏 .

The discrete vector signal model is built from 𝑁 = 𝑁1 +𝑁2 +1
(𝑁1/𝐹𝑠 ≫ 𝑁 ′

1/𝐵, 𝑁2/𝐹𝑠 ≫ 𝑁 ′
2𝐵) samples at 𝑇𝑠 = 1/𝐹𝑠 ,

x = 𝛼a(𝜼) + n = 𝜌𝑒 𝑗 𝜑a(𝜼) + n, (7)
x = [. . . , 𝑥 (𝑘𝑇𝑠) , . . .]⊤, n = [. . . , 𝑛 (𝑘𝑇𝑠), . . .]⊤ ,

s = [. . . , 𝑠 (𝑘𝑇𝑠) , . . .]⊤,
a(𝜼) = [. . . , 𝑠((1 − 𝑏) (𝑘𝑇𝑠 − 𝜏))𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑘𝑇𝑠−𝜏)+𝑑 (𝑘𝑇𝑠−𝜏)2) , . . .]⊤,

with 𝑁1 ≤ 𝑘 ≤ 𝑁2 and n ∼ CN
(
0, 𝜎2

𝑛I𝑁
)
. The unknown

deterministic parameters can be gathered in vector 𝝐 =[
𝜎2

𝑛, 𝜌, 𝜑, 𝜏, 𝑏, 𝑑
]⊤ , with 𝛼 = 𝜌𝑒 𝑗 𝜑 (𝜌 ∈ R+, 0 ≤ 𝜑 ≤ 2𝜋).

In this contribution a single LOS transmission is considered,
however, (7) can also be obtained if one considers transmission
via diffraction or reflection [29], [31] and for multiple signal
sources.

III. BACKGROUND ON MLE AND AMBIGUITY FUNCTION

Considering (7), the MLE that provides the estimated values
of the delay, Doppler, and acceleration is calculated using a
correlation between the received signal with noise (x) and a
number of simulated replica signals without noise [2], [32].
The vector of estimated parameters 𝜼̂ = [𝜏̂, 𝑏̂, 𝑑] is defined
as1, [2], [32],

𝜼̂ = arg min
𝜼

{
x𝐻𝚷⊥

a(𝜼)x
}
= arg max

𝜼

{ ��a(𝜼)𝐻x
��2

a(𝜼)𝐻a(𝜼)

}
. (8)

Varying the parameters of interest in (8) within a span of
potential solutions within ±3𝜎 deviation from the true value,
where 𝜎2 is a diagonal element of the derived CRB, allows to
check the newly derived CRBs. Indeed, the MSE of MLEs (8)
must approach the derived CRB under high SNR conditions
[8]. The maximum SNR at the output of the MLE matched
filter including compensation for the wideband signal model
is SNRout =

|𝛼 |2E
(𝜎2

n/𝐹𝑠) (1−𝑏) [23], with E =
∫ +∞
−∞ |𝑠 (𝑡) |2 𝑑𝑡 the

signal energy. The corresponding ambiguity function is defined
in [29], also being valuable in the comparison with the derived
CRB. For a range of potential values of the estimated param-
eters 𝜼0, the ambiguity is maximum and indicates optimum
error with the values of a(𝜼 = 𝜼0). For values of 𝜼0 different
to 𝜼, the ambiguity function decreases,

Ξ

(
𝜼; 𝜼0

)
=

|𝛼 |2

𝑁




a (
𝜼0

)


2
����� a (𝜼)𝐻 a

(
𝜼0)

∥a (𝜼)∥


a (

𝜼0)


�����2 . (9)

The ambiguity function can be approximated by a 2nd order
Taylor expansion, which includes a matrix defined in the
derivation of the Fisher Information Matrix (FIM), 𝚽(𝜼) [10],

Ξ (𝜼 + 𝑑𝜼; 𝜼) ≃ |𝛼 |2

𝑁
∥a (𝜼)∥2

(
1 − 1

2
𝑑𝜼𝑇

(
2Re {𝚽 (𝜼)}
∥a (𝜼)∥2

)
𝑑𝜼

)
,

(10)

1Let 𝑆 = 𝑠𝑝𝑎𝑛 (A) be the linear span of the set of the column vectors
of matrix A, 𝚷A = A

(
A𝐻A

)−1 A𝐻 is the orthogonal projection over 𝑆, and
𝚷⊥

A = I −𝚷A.
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where the second term, which depends on 𝚽 (𝜼) is directly
related to the CRB (17),

𝚽 (𝜼) = 𝜕a(𝜼)
𝜕𝜼𝑇

𝐻

𝚷⊥
a(𝜼)

𝜕a(𝜼)
𝜕𝜼𝑇

=





𝜕a(𝜼)
𝜕𝜼𝑇





2
−

���a(𝜼)𝐻 𝜕a(𝜼)
𝜕𝜼𝑇

���2
∥a(𝜼)∥2 .

(11)
Both the MLE and ambiguity function are instrumental to

validate the CRB expressions derived in this contribution (refer
to Section V).

It is worth pointing out that the amplitude and phase
MLEs are given by the magnitude and argument of the
cross-ambiguity function, respectively evaluated at the delay,
Doppler and acceleration MLEs [32],

𝜑̂ (𝜼̂) = arg
{(

a𝐻 (𝜼̂) a (𝜼̂)
)−1

a𝐻 (𝜼̂) x
}

(12)

𝜌̂ (𝜼̂) =
����(a𝐻 (𝜼̂) a (𝜼̂)

)−1
a𝐻 (𝜼̂) x

���� (13)

If the delay/Doppler/acceleration MLE reaches its asymptotic
performance then so do the amplitude and phase estimates.
This clearly shows that not correctly accounting for the
acceleration can also impact amplitude and phase estimates.
The MLE of the noise variance is not stated because it has a
trivial equation found in [32].

IV. NEW COMPACT CRB FOR JOINT TIME-DELAY,
DOPPLER STRETCH AND ACCELERATION ESTIMATION

A. Background

Considering that the parameters to be estimated are 𝝐 =[
𝜎2

𝑛, 𝜌, 𝜑, 𝜏, 𝑏, 𝑑
]⊤, we recall that [10], 𝐶𝑅𝐵𝜎2

𝑛
= 1

𝑁

(
𝜎2

𝑛

)2

and

𝐶𝑅𝐵𝜌 =
𝜎2

𝑛

2 ∥a (𝜼)∥2

+ 𝜌2
Re

{
a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤

}
CRB𝜼 Re

{
a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤

}⊤
∥a (𝜼)∥4 , (14)

𝐶𝑅𝐵𝜑 =
𝜎2

𝑛

2𝜌2
1

∥a (𝜼)∥2

+
Im

{
a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤

}
CRB𝜼 Im

{
a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤

}⊤
∥a (𝜼)∥4 , (15)

CRB𝜼,𝜑 = −CRB𝜼

Im
{
a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤

}⊤
∥a (𝜼)∥2 . (16)

Then, concerning the recent narrowband/wideband results in
[10], [24], we need to compute the CRB of 𝜼 for the Gaussian
CSM accounting for the acceleration in (7), which is given by
2,

CRB𝜼 =
𝜎2

𝑛

2|𝛼 |2
Re {𝚽(𝜼)}−1 , (17)

2Please note that in some cases where the parameters are not of the
same order, the inverse of the FIM cannot be calculated without numerical
inaccuracies. In that case, it is required to normalize the parameters, such that
they are of the same order to guarantee a numerically stable calculation of
the inverse of the FIM.

with 𝚽(𝜼) defined in (11), allowing easy computation of
the CRB through simple matrix substitutions as well as the
terms a𝐻 (𝜼) 𝜕a(𝜼)

𝜕𝜼⊤ and ∥a (𝜼)∥2 to update 𝐶𝑅𝐵𝜌, 𝐶𝑅𝐵𝜑 and
CRB𝜼,𝜑 .

B. New Compact form CRB𝜼 Expression

Let us define 𝛽 = 1 − 𝑏 and 𝜔𝑐 = 2𝜋 𝑓𝑐. Then, we aim
to derive a compact formulation of Re {𝚽(𝜼)}, which can be
rewritten as

Re {𝚽(𝜼)} =

(·)1,1 (·)1,2 (·)1,3
(·)1,2 (·)2,2 (·)2,3
(·)1,3 (·)2,3 (·)3,3

 (18)

= Re
{
𝜕a(𝜼)𝐻
𝜕𝜼𝑇

𝜕a(𝜼)
𝜕𝜼𝑇

}
− Re

{
− 1
∥a(𝜼)∥2

(
a(𝜼)𝐻 𝜕a(𝜼)

𝜕𝜼𝑇

)𝐻 (
a(𝜼)𝐻 𝜕a(𝜼)

𝜕𝜼𝑇

)}
.

After tedious calculus (refer to Appendix A for details), the
terms in Re {𝚽(𝜼)} are given by the following (with several
new terms w.r.t. the delay/Doppler case [24])

(·)1,1 = 𝐹𝑠
©­«
𝛽2

(
𝑊3,3 − |𝑤3 |2

𝑤1

)
+ 4𝜔2

𝑐𝑑
2
(
𝑊2,2 − |𝑤2 |2

𝑤1

)
−4𝜔𝑐𝑑𝛽Im

{
𝑊3,2 −

𝑤∗
2𝑤3
𝑤1

} ª®¬ ,

(·)1,2 = 𝐹𝑠

©­­­­­­­«

2𝜔2
𝑐𝑑

(
|𝑤2 |2
𝑤1

−𝑊2,2

)
−𝜔𝑐𝛽Im

{
𝑤∗

2𝑤3
𝑤1

−𝑊3,2

}
−𝜔𝑐𝛽Im

{
𝑤∗

5𝑤2
𝑤1

−𝑊∗
5,2

}
−𝛽Re

{
𝑤∗

5𝑤3
𝑤1

−𝑊∗
5,3

}
ª®®®®®®®¬
,

(·)1,3 = 𝐹𝑠
©­«

2𝜔2
𝑐𝑑

(
𝑤2𝑤

∗
4

𝑤1
−𝑊∗

4,2

)
−𝜔𝑐𝛽Im

{
𝑤∗

4𝑤3
𝑤1

−𝑊∗
4,3

}ª®¬ ,
(·)2,2 = 𝐹𝑠

©­«
𝜔2
𝑐

(
𝑊2,2 − |𝑤2 |2

𝑤1

)
+

(
𝑊5,5 − |𝑤5 |2

𝑤1

)
+2𝜔𝑐Im

{
𝑊5,2 − 𝑤2𝑤5

𝑤1

} ª®¬ ,
(·)2,3 = 𝐹𝑠

(
𝜔2
𝑐

(
𝑊∗

4,2 −
𝑤2𝑤

∗
4

𝑤1

)
− 𝜔𝑐Im

{
𝑤5𝑤

∗
4

𝑤1
−𝑊5,4

})
,

(·)3,3 = 𝐹𝑠𝜔
2
𝑐

(
𝑊4,4 −

|𝑤4 |2

𝑤1

)
, (19)

and the terms 𝑤1, . . . , 𝑤5, 𝑊2,2, . . . ,𝑊5,5 are computed by
exploiting the properties of a band-limited signal as

𝑤1 =
1
𝛽𝐹𝑠

s𝐻s, 𝑤2 =
1

𝛽2𝐹2
𝑠

s𝐻Ds, 𝑤3 =
1
𝛽

s𝐻𝚲s,

𝑤4 = 𝑊2,2 =
1

𝛽3𝐹3
𝑠

s𝐻D2s, 𝑤5 = 𝑊3,2 =
1

𝛽2𝐹𝑠

s𝐻D𝚲s,

𝑊3,3 =
𝐹𝑠

𝛽
s𝐻Vs, 𝑊4,2 =

1
𝛽4𝐹4

𝑠

s𝐻D3s,

𝑊4,3 = 𝑊5,2 =
1

𝛽3𝐹2
𝑠

(
s𝐻D𝚲Ds − s𝐻Ds

)
,

𝑊4,4 =
1

𝛽5𝐹5
𝑠

s𝐻D4s,

𝑊5,3 =
1
𝛽2

(
s𝐻𝚲s + s𝐻VDs

)
,
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𝑊5,4 =
1

𝛽4𝐹3
𝑠

(
s𝐻D𝚲D2s − s𝐻D2s

)
,

𝑊5,5 =
1

𝛽3𝐹𝑠

(
s𝐻s + s𝐻DVDs − 2Re

{
s𝐻𝚲Ds

})
, (20)

with D, V and 𝚲 defined as

D = diag ( [𝑁1, 𝑁1 + 1, . . . , 𝑁2 − 1, 𝑁2]) , (21)

(V)𝑛,𝑛′ =
����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ | 2

(𝑛−𝑛′)2

𝑛′ = 𝑛 : 𝜋2

3

, (22)

(𝚲)𝑛,𝑛′ =
����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ |

(𝑛−𝑛′)
𝑛′ = 𝑛 : 0

, (23)

for 𝑁1 ≤ 𝑛, 𝑛′ ≤ 𝑁2. It is worth noting that Re {𝚽(𝜼)}, and
therefore the corresponding CRB depend on the Doppler and
acceleration parameters (i.e., 𝑏 and 𝑑). Therefore, for large
velocity and acceleration values, it is expected that the CRB
cannot neglect these terms when assessing the asymptotic
estimation precision of 𝜏 and 𝑏. Due to the magnitude of the
parameters themselves being of low order, it is unclear exactly
how much of a difference the typical values for high dynamics
applications can impact the CRB until the final value for CRB
is computed.

Injecting the corresponding 𝑤1, . . . , 𝑤5, 𝑊2,2, . . . ,𝑊5,5 from
(20) into (19), and inverting Re {𝚽(𝜼)} leads to a new compact
form CRB expression, which has been derived using baseband
signal samples. To complete these results and obtain the
missing amplitude and phase CRB expressions in (14) and
(15), we have by the same integral equations for w and Qw
(Appendix A): ∥a (𝜼)∥2 = 𝐹𝑠𝑤1 = s𝐻s

𝛽
and

a (𝜼)𝐻 𝜕a (𝜼)
𝜕𝜼𝑇

= 𝐹𝑠s𝐻s
©­­­«

𝑗
𝜔𝑐

𝛽𝐹𝑠
(1 − 𝛽) − s𝐻𝚲s

s𝐻s
− 𝑗

𝜔𝑐 (1−2𝑑)
𝛽2𝐹2

𝑠

s𝐻Ds
s𝐻s − 1

𝛽2𝐹𝑠

s𝐻D𝚲s
s𝐻s

− 𝑗
𝜔𝑐

𝛽3𝐹3
𝑠

s𝐻D2s
s𝐻s

ª®®®¬
⊤

.

(24)
These compact form expressions generalize the recent results
as in [24] for the joint delay/Doppler estimation, and update
the results related to the amplitude and phase CRBs.

C. Special Case: Standard Narrowband Signal Model

Under the standard narrowband signal assumption, i.e.,
where no Doppler impact is considered on the baseband
signal, 𝑠(𝑡 − 𝜏0 (𝑡)) ≃ 𝑠(𝑡 − 𝜏), 𝑎(𝑡; 𝜼) can be rewritten as
𝑎(𝑡; 𝜼) = 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) 𝑠 (𝑡 − 𝜏). In this case, the
compact form expression of Re {𝚽(𝜼)} simplifies to

(·)1,1 = 𝐹𝑠
©­«
𝑊3,3 − |𝑤3 |2

𝑤1
+ 4𝜔2

𝑐𝑑
2
(
𝑊2,2 − |𝑤2 |2

𝑤1

)
−4𝜔𝑐𝑑Im

{
𝑊3,2 −

𝑤∗
2𝑤3
𝑤1

} ª®¬ ,
(·)1,2 = 𝐹𝑠

(
2𝜔2

𝑐𝑑

(
|𝑤2 |2
𝑤1

−𝑊2,2

)
− 𝜔𝑐Im

{
𝑤∗

2𝑤3
𝑤1

−𝑊3,2

})
,

(·)1,3 = 𝐹𝑠

(
2𝜔2

𝑐𝑑

(
𝑤2𝑤

∗
4

𝑤1
−𝑊∗

4,2

)
− 𝜔𝑐Im

{
𝑤∗

4𝑤3
𝑤1

−𝑊∗
4,3

})
,

(·)2,2 = 𝐹𝑠

(
𝜔2
𝑐

(
𝑊2,2 −

|𝑤2 |2

𝑤1

))
,

(·)2,3 = 𝐹𝑠

(
𝜔2
𝑐

(
𝑊∗

4,2 −
𝑤2𝑤

∗
4

𝑤1

))
,

(·)3,3 = 𝐹𝑠

(
𝜔2
𝑐

(
𝑊4,4 −

|𝑤4 |2

𝑤1

))
, (25)

and

a (𝜼)𝐻 𝜕a (𝜼)
𝜕𝜼𝑇

= 𝐹𝑠s𝐻s

(
𝑗
𝜔𝑐

𝛽𝐹𝑠
(1 − 𝛽) − s𝐻𝚲s

s𝐻s
− 𝑗

𝜔𝑐 (1−2𝑑)
𝛽2𝐹2

𝑠

s𝐻Ds
s𝐻s − 𝑗

𝜔𝑐

𝛽3𝐹3
𝑠

s𝐻D2s
s𝐻s

)⊤
.

(26)
These expressions generalize the recent narrowband de-
lay/Doppler estimation results in [10], and the corresponding
amplitude and phase CRB expressions computation. Finally,
for the main parameters of interest, the CRBs can be simply
taken from CRB𝜼:

𝐶𝑅𝐵𝜏 = CRB𝜼 (1, 1), 𝐶𝑅𝐵𝑏 = CRB𝜼 (2, 2),
𝐶𝑅𝐵𝑑 = CRB𝜼 (3, 3).

(27)

V. VALIDATION AND DISCUSSION

A. GPS L1 C/A Signal Scenario

To assess the validity of the new CRB expressions we
consider first a GPS L1 C/A band-limited signal. The so-called
Pseudo-Random Noise (PRN) code has a length of 1023 chips
with a chip rate of 1.023 MHz. We consider a signal duration
of 10 ms (i.e., 10 consecutive PRN codes) and 𝐹𝑠 = 2.046
MHz. To synthesize a high dynamics scenario we consider
a Doppler equal to 10 kHz and acceleration equal to 100g
(g= 9.81 m/s2), this being a representative case for instance
in an anti-ballistic missile.

First, we assess if the ambiguity function (9) and its 2nd
order Taylor approximation (10) coincide. In that perspective,
we consider a scenario where only the acceleration parameter
𝑑 is to be estimated. This result is illustrated in Figure 2, with a
clear fit between the ambiguity function and its approximation
for a wide range of acceleration values. This is the first proof
of the exactness of the CRB, but the complete estimation
problem still needs to be characterized.
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Fig. 2. Ambiguity function and 2nd order Taylor approximation for the
acceleration estimation with a GPS L1 C/A band-limited signal.
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Since (7) belongs to the class of CSM [7], the MLE
converges to the CRB at high SNR [8], a property which
can be used as an alternative way to confirm the CRB
validity, as previously mentioned. Then, a second experiment
is carried out with the signal model in (6) and 10 ms of signal,
with 𝜼 = [𝜏, 𝑏, 𝑑]⊤ unknown deterministic parameters to be
estimated. The new CRBs and the corresponding MLEs (8),
in terms of SNR𝑜𝑢𝑡 are obtained for 1000 Monte Carlo runs
and shown in Figure 3. The MLE converges to the CRB for
each parameter, which confirms the validity and exactness of
the CRBs. In the following subsection, we will discuss further
results about the estimation of the delay, Doppler, and accel-
eration parameters. In the corresponding analysis, the cases of
using a well-specified model and a misspecified/mismatched
model have been compared for estimation performance. Any
case where the misspecified estimator performs better than the
derived CRB including acceleration indicates that the bound
does not truly represent the preferred estimator, i.e., the well-
specified estimator is overfitting by including joint acceleration
estimation.

Mismatch estimation performance

To assess the effect of acceleration on the estima-
tion of delay, Doppler, and acceleration, the delay/Doppler
MLE, termed “mismatch”, is compared to the joint de-
lay/Doppler/acceleration MLE and the corresponding CRB.
Since the mismatched MLE is only performing the simultane-
ous estimation of two parameters and neglecting acceleration
(assuming 𝑑 = 0), the performance will be closer to that seen
in [24]; however, the effects of acceleration on the carrier
propagation and the evolution of Doppler are not accounted
for in that work. The MSE obtained by the mismatch MLE can
be expected to deviate from the previously derived CRB. This
may imply overall worse performance for the mismatch MLE
compared to the delay/Doppler/acceleration MLE, due to the
presence of acceleration. The 𝐶𝑅𝐵𝑏 (27) for the latter case
is seen to have increased because of the additional estimation
effort, a sign of overfitting. First, we can see in Figure 4 (top)
that the delay estimation is not affected by an acceleration of
100 g for a duration of 10 ms: both MLE 𝜏0 and MLE 𝜏0
“Mismatch” coincide. This is a result which shows that the
addition of acceleration estimation does not have a negative
or positive effect for short enough estimation periods. What is
more illustrative on the impact of acceleration is the effects for
a longer estimation interval of 20 ms, where the acceleration
has more time to take effect and shift the true value from the
estimated mismatch value. Figure 4 also shows the results of
the mismatched delay estimation for 20 ms and accelerations
ranging up to 100 g. The conclusion from [24] that the delay
CRB is decoupled from the Doppler still holds, and the same
is true for decoupling from acceleration in our derivation. The
acceleration effectively increases the SNR threshold, that is the
SNR required for the mismatch MLE performance to converge
to the CRB at high SNR regime. Figure 4 shows that the
MLE including acceleration outperforms the convergence to
the CRB with respect to the mismatched MLE, regardless
of acceleration magnitude. Neglecting estimation of a high
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Fig. 3. Delay CRB/MSE for 𝐹𝑠 = 2.046 MHz, 1 ms and 10 ms of GPS C/A
signal (top). Doppler CRB/MSE for 𝐹𝑠 = 2.046 MHz, 1 ms and 10 ms of
GPS C/A signal (middle). Acceleration CRB/MSE for 𝐹𝑠 = 2.046 MHz, 1
ms and 10 ms of GPS C/A signal (bottom).
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magnitude acceleration contributes a virtual noise but does not
impact the optimum estimation error for high enough SNR.
Therefore, even with long estimation periods, the optimum
performance of the mismatched MLE will always coincide
with the fully specified MLE at SNR≥ 26 dB. This is also
an important result for low SNR applications that can also
experience significant acceleration (e.g. ascent vehicles from
the moon, large thrust maneuvers to change satellite orbits).
Future applications of GNSS for spacecraft positioning can
experience low signal quality and hence, need to include the
estimation of acceleration to avoid the virtual noise included
in the mismatch MLE.
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Fig. 4. Delay CRB and MSE mismatch for 10 ms 𝐹𝑠 = 2.046 MHz (top)
and 20 ms 𝐹𝑠 = 1.023 MHz (bottom).

In Figure 5 we show the results for the misspecified Doppler
estimation. “CRB𝑏1 without 𝑑” refers to the Doppler CRB ob-
tained from the delay/Doppler formulation [24], and “CRB𝑏0”
stands for the new Doppler CRB accounting for acceleration
(27). In the first case (zero acceleration), we can see that the
Doppler estimate converges to the corresponding CRB without
acceleration. This is because the constant Doppler assump-
tion is not broken. Note that the estimation performance is
degraded by adding an extra parameter and it is illustrated
by the difference between “CRB𝑏0” and “CRB𝑏1 without
𝑑” (6 dB increase). It is noteworthy that the mismatched
Doppler estimator performs better than the correctly specified

one for certain SNR values, magnitudes of acceleration, and
observation times. This is a clear example of the trade-off
between the overfitting induced by an additional parameter
and the degradation in MSE expected from a misspecified
MLE, which is a theoretical problem that can be tackled by
considering the so-called misspecified CRB (MCRB) [25] as
exemplified hereinafter.For 10 ms or greater of signal, the
acceleration impact on the mismatched MLE is clear. While
the MSE accounting for acceleration converges to the CRB,
the mismatched Doppler MSE converges to a different value.

Since the derivation of closed-form misspecified CRBs is
out of the scope of the present paper (and is left for future
work), for the sake of analysis, we resort to numerical compu-
tations of the “misspecified CRB” (MCRB) from [33, Eq.(10),
Eq.(43), Eq.(44)]. Indeed, the MSE of the misspecified estima-
tor must approach

√
𝑀𝐶𝑅𝐵 + Δ𝑏2, where Δ𝑏 gives the differ-

ence between the expected value of Doppler with and without
acceleration. The same behavior is seen, where the mismatch
error approaches a constant value in the asymptotic regime,
suggesting a biased estimate. For some acceleration values,
the steady value of the MSE crosses the upper CRB including
𝑑, giving a threshold where the mismatch estimator performs
worse than the fully specified delay/Doppler/acceleration es-
timation. Figure 5 includes observation intervals of 10 ms
(top) and 20 ms (bottom), each of them having a different
performance depending on the acceleration. The SNR at which
the fully specified estimator performs best is the lowest for
higher accelerations. For an observation duration of 20 ms, the
high acceleration mismatch cases have a noticeable bias and
perform worse than the fully specified CRB at all reasonable
SNR values. This is expected for the longer observation period
because the Doppler is going to vary significantly over that
time interval, proportional to the acceleration. The mismatch
MLE fails to account for that and gives a biased estimate.
A period of 20 ms is desired for GPS signal acquisition
and tracking to achieve the lowest magnitude of error while
remaining within the limits of coherent integration. The results
of this work show that for observation durations of 10 ms
or more, the inclusion of acceleration estimation is necessary
for optimum performance of Doppler estimation when targets
have high dynamics.

Now, to indicate the point that the target is considered to be
under “high dynamics”, Figure 6 defines an approximate ac-
celeration threshold for when the mismatched MLE performs
worse than the CRB including acceleration. This shows the
operational point where ignoring the acceleration term causes
that the mismatch MLE perfoms worse than the well-specified
MLE. Therefore, the high dynamics region that benefits from
acceleration estimation is reached. The performance w.r.t.
acceleration is analyzed at a representative SNR of 25 dB,
to match real-world applications as well as ensure the error
has converged to its steady value.

The Doppler CRB derived in this work does not vary ac-
cording to the acceleration, but it was shown that the mismatch
MLE performance is impacted by significant accelerations.
Figure 6 gives a good comparison of the performance for the
different times of the signal, with lower MSE for longer time
intervals. For a 1 ms observation time, the acceleration is not
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Fig. 5. Doppler CRB and MSE mismatch for 10 ms 𝐹𝑠 = 2.046 MHz (Top)
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Fig. 6. Doppler CRB and MSE mismatch for 1 ms, 10 ms, and 20 ms for
different magnitudes of acceleration

able to cause a significant enough change in the Doppler to
degrade the performance of the mismatch MLE. For the higher
duration (20 ms), the increase is steeper, quickly exceeding
the delay/Doppler/acceleration CRB, and eventually settles
to some value below the bound for the 1 ms delay/Doppler
𝐶𝑅𝐵𝑏. Through trial and error, this value was found to be ap-
proximately equal to the delay/Doppler/acceleration bound for

TABLE I
ACCELERATION THRESHOLD VALUES FOR SNR= 25dB IN THE GPS C/A

SYSTEM

Estimation
duration

Optimum
mismatch error

Threshold for
acceleration
estimation

1 ms a > 90g
(better than 10 ms) Never

10 ms 5g < a < 50g ≈ 35g
20 ms a < 5g, a > 50g ≈ 9g

a signal length of 6 ms. This means that for high magnitude ac-
celerations, the minimum period of 6ms is needed for the fully
specified estimator to perform better than the mismatch MLE.
Table I gives a summary of the key thresholds determined
from Figure 6. These are approximations since the resolution
of the different acceleration calculations is not optimized.
The results in Table I give an estimation of the magnitude
of acceleration that the GPS C/A system must be reached
for the delay/Doppler/acceleration MLE to be necessary for
optimizing Doppler estimation, a threshold for high dynamics.
Conversely, it also gives the limit of low acceleration values
for which the biased mismatch MLE is preferred (although
not attaining the CRB). An interesting result is a threshold
for 20 ms being 9g, this value is close to the limit allowable
for manned vehicles [34]. So it can be concluded that for
optimum Doppler estimation of a fast-moving manned vehicle
e.g. a launch vehicle or crew capsule, the mismatch MLE is
the ideal choice for estimation. For any vehicles accelerating
with a greater magnitude e.g. ballistics missiles, it is preferred
to use the delay/Doppler/acceleration MLE (for any duration
longer than 6 ms). Note that this analysis is specific for SNR
= 25 dB, the magnitudes may differ for different operating
conditions. For general scenarios, accelerations greater than
30g require the inclusion of acceleration estimation to optimize
the error in the Doppler (and this general threshold value is
lower for higher SNR scenarios).

Finally, we assess the impact on the acceleration estimation
in Figures 7 and 8. The mismatched acceleration estimate
is obtained from a linear regression (LR) using consecutive
Doppler estimates. As was seen above, the error in the Doppler
mismatch estimate depends on the magnitude of acceleration
and so the LR calculation will also have performance losses.
Since the total duration of signal observation is 20 ms, the
bound to compare is the 20 ms 𝐶𝑅𝐵𝑑 . Four different scenarios
for the LR calculation are used for analysis. Figure 7 (top)
shows the performance of 4 consecutive 5 ms estimates, and
Figure 7 (bottom) uses 2 consecutive 10 ms estimates. The
remaining cases are the inverses (5x4 ms and 10x2 ms) and
are displayed in Figure 8. The LR error in Figure 7 (top)
does not reach the CRB for 20 ms because of the higher
magnitude of error for each 5 ms Doppler estimate. Therefore,
the LR-based acceleration estimation error seems to increase
for high dynamics and short consecutive estimation periods.
Figure 7 also shows that the LR mismatch error flattens out
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at lower SNR values as the acceleration increases (see 75g
and 100g). For lower magnitude accelerations, it is preferred
to use longer observation times as the added error due to
neglecting acceleration is not as significant for the LR model.
The trade-off between acceleration and observation intervals
for the mismatch LR error at a representative SNR = 25 dB
is shown in Figure 8. The preferred length of consecutive
Doppler estimates is 2×10 ms. These results further confirm
that for high magnitude accelerations, it is preferred to not
neglect the acceleration term.
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Fig. 7. Acceleration CRB and MSE LR mismatch for consecutive Doppler
estimates of 4x5 ms (Top) and 2x10 ms (Bottom)

B. Radar LFM Chirp Signal Scenario

To further support the discussion, in the sequel we present
a second example to assess the validity of the new CRB
expressions. We consider a radar LFM chirp signal classically
defined as,

𝑠(𝑡) = 𝑒 𝑗2𝜋 𝑓 (𝑡) , 𝑓 (𝑡) = 𝐵

2𝑇

(
𝑡

𝑇
− 1

2

)2
, 𝑇 = 𝑁𝑇𝑠 , (28)

with 𝐵 the chirp bandwidth equal to 2 MHz and 𝑁 the number
of samples. Moreover, we consider a signal duration of 10
ms and 𝐹𝑠 = 2.046 MHz. To synthesize a high dynamics
scenario we consider again the previous set of parameters
where the Doppler is equal to 10 kHz and acceleration is
equal to 100g. In Figures 9 and 10, we illustrate the new
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Fig. 8. Trade-off for a number of consecutive Doppler estimation periods to
optimize acceleration mismatch error (SNR = 25 dB)

CRBs and the corresponding MLE for the set of parameters
𝜼 = [𝜏, 𝑏, 𝑑]⊤ in terms of SNR𝑜𝑢𝑡 , obtained for 1000 Monte
Carlo runs. From Figure 9, we confirm again that the delay
estimation is not affected by the acceleration term for 10 ms,
and both MLE 𝜏0 and MLE 𝜏0 “Mismatch” coincide. In Figure
10 (top plot) we show the results for the Doppler estimation
considering 1 ms and 10 ms of a signal. Note that as in the
GPS C/A signal example, for 1 ms of signal we can see that the
Doppler estimate converges to the corresponding CRB, with
or without acceleration. Moreover, adding the acceleration
parameter degrades the CRB around 6 dB. In contrast, when
considering 10 ms of signal, the MLE accounting for the
acceleration converges to the CRB whereas the mismatched
Doppler MLE does not. The MLE mismatch does not converge
in this case, compared to the 1 ms observation time because
the duration of the signal gives enough time for the Doppler to
change significantly due to acceleration. The estimated value
of Doppler is therefore the expected value for zero acceleration
and is biased by the amount of shift due to acceleration.
Again, we conclude that if the Doppler cannot be assumed
constant during the observation time, the acceleration must be
considered to obtain a correct estimate (for high magnitude
accelerations). Finally, we assess the acceleration estimation
performance in Figure 10 (bottom plot). The mismatched
acceleration is computed from an LR using 10 consecutive
1 ms Doppler estimates. Note that while the acceleration
MLE converges to the corresponding CRB, the LR-based
acceleration leads to an important loss of performance.

VI. CONCLUSION

In this contribution, we derived novel CRB compact form
expressions for the joint delay, Doppler, and acceleration
estimation. These expressions are valid for a generic band-
limited signal, avoiding the standard narrowband assumption,
and therefore can be exploited in several applications. The
new CRB expressions have the advantage that they have been
derived by using a baseband signal model that is defined on
sampled versions of the signals. This inherently accounts for
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Fig. 9. Delay CRB/MSE for 𝐹𝑠 = 2.046 MHz and 10 ms of a Radar LFM
chirp signal.
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Fig. 10. Doppler (Top) and Acceleration (Bottom) CRB/MSE of Radar LFM
chirp signal for 𝐹𝑠 = 2.046 MHz duration 1 ms and 10 ms.

the effect of the sampling frequency and a limited number
of samples in the observation time. Results were illustrated
using representative GPS L1 C/A and LFM chirp band-limited
signals. The validity of the new CRBs was demonstrated by
resorting to the MLE and the ambiguity function. Both results
confirmed the validity and exactness of the proposed CRBs. To
complete the discussion, the performance loss of conventional
delay/Doppler approaches in high dynamics scenarios, w.r.t.
delay/Doppler/acceleration results were also shown for both
signals. A range of high dynamics acceleration values have
been determined, which indicate when the MLE including
acceleration is the preferred choice over the mismatched
delay/Doppler MLE.

APPENDIX A

A. Details on the CRB Derivation

Recall that 𝛽 = 1 − 𝑏, 𝜔𝑐 = 2𝜋 𝑓𝑐, 𝑠 (1) (𝑡) =
𝑑𝑠 (𝑡)
𝑑𝑡

and
𝑠 (2) (𝑡) =

𝑑2𝑠 (𝑡)
𝑑𝑡2 . We search to derive a compact form of

Re {𝚽(𝜼)}, which can be rewritten as

Re {𝚽(𝜼)} = Re
{
𝜕a(𝜼)𝐻
𝜕𝜼𝑇

𝜕a(𝜼)
𝜕𝜼𝑇

}
− Re

{
− 1
∥a(𝜼)∥2

(
a(𝜼)𝐻 𝜕a(𝜼)

𝜕𝜼𝑇

)𝐻 (
a(𝜼)𝐻 𝜕a(𝜼)

𝜕𝜼𝑇

)}
,

where the vector 𝜕a(𝜼)
𝜕𝜼 =

[
𝜕a(𝜼)
𝜕𝜏

𝜕a(𝜼)
𝜕𝑏

𝜕a(𝜼)
𝜕𝑑

]𝑇
is

−

(1 − 𝑏)𝑠 (1) (𝑡; 𝜼) − ( 𝑗𝜔𝑐𝑏 + 𝑗2𝜔𝑐𝑑 (𝑡 − 𝜏))𝑠(𝑡; 𝜼)

(𝑡 − 𝜏)𝑠 (1) (𝑡; 𝜼) + 𝑗𝜔𝑐 (𝑡 − 𝜏)𝑠(𝑡; 𝜼)
𝑗𝜔𝑐 (𝑡 − 𝜏)2𝑠(𝑡; 𝜼)


× 𝑒− 𝑗𝜔𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) ,

and it can be expressed in terms of the following matrices,

𝜕a(𝑡; 𝜼)
𝜕𝜼

= −Q𝝑𝑒− 𝑗𝜔𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) , (29)

Q =


− 𝑗𝜔𝑐𝑏 − 𝑗2𝜔𝑑 (1 − 𝑏) 0 0

0 𝑗𝜔𝑐 0 0 1
0 0 0 𝑗𝜔𝑐 0

 , (30)

𝝑 =


𝑠(𝑡; 𝜼)

(𝑡 − 𝜏)𝑠(𝑡; 𝜼)
𝑠 (1) (𝑡; 𝜼)

(𝑡 − 𝜏)2𝑠(𝑡; 𝜼)
(𝑡 − 𝜏)𝑠 (1) (𝑡; 𝜼)


. (31)

Representing the signal with discrete time values (𝑡 = 𝑘𝑇𝑠 and
𝑁1 ≤ 𝑘 ≤ 𝑁2) allows the products to be expressed as sums,

∥a(𝜼)∥2 =

𝑁2∑︁
𝑘=𝑁1

|𝑠(𝑘𝑇𝑠; 𝜼) |2 , (32)

a(𝜼)𝐻 𝜕a(𝜼)
𝜕𝜼𝑇

= −
(

𝑁2∑︁
𝑘=𝑁1

𝝑(𝑘𝑇𝑠; 𝜼)𝑠∗ (𝑘𝑇𝑠; 𝜼)
)𝑇

Q𝑇 , (33)

𝜕a(𝜼)𝐻
𝜕𝜼𝑇

𝜕a(𝜼)
𝜕𝜼𝑇

= Q∗

(
𝑁2∑︁

𝑘=𝑁1

𝝑∗ (𝑘𝑇𝑠; 𝜼)𝝑𝑇 (𝑘𝑇𝑠; 𝜼)
)

Q𝑇 . (34)
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Taking 𝑠(𝑡) as a band-limited signal, and using the Nyquist-
Shannon theorem, we have that

lim
𝑁1→−∞
𝑁2→∞

Re {𝚽(𝜼)} = 𝐹𝑠Re
{
QWQ𝐻 − (Qw) (Qw)𝐻

𝑤1

}
, (35)

where w =


𝑤1
𝑤2
𝑤3
𝑤4
𝑤5


and W =


𝑤1 𝑤∗

2 𝑤∗
3 𝑤∗

4 𝑤∗
5

𝑤2 𝑊2,2 𝑊∗
3,2 𝑊∗

4,2 𝑊∗
5,2

𝑤3 𝑊3,2 𝑊3,3 𝑊∗
4,3 𝑊∗

5,3
𝑤4 𝑊4,2 𝑊4,3 𝑊4,4 𝑊∗

5,4
𝑤5 𝑊5,2 𝑊5,3 𝑊5,4 𝑊5,5


,

and the different terms are expressed from the baseband signal
samples as

𝑤1 =

∫ ∞

−∞
|𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽𝐹𝑠

s𝐻s,

𝑤2 =

∫ ∞

−∞
(𝑡 − 𝜏) |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽2𝐹2
𝑠

s𝐻Ds,

𝑤3 =

∫ ∞

−∞
𝑠 (1) (𝑡; 𝜼)𝑠(𝑡; 𝜼)𝑑𝑡 = 1

𝛽
s𝐻𝚲s,

𝑤4 = 𝑊2,2 =

∫ ∞

−∞
(𝑡 − 𝜏)2 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽3𝐹3
𝑠

s𝐻D2s,

𝑤5 = 𝑊3,2 =

∫ ∞

−∞
(𝑡 − 𝜏)𝑠 (1) (𝑡; 𝜼)𝑠∗ (𝑡; 𝜼)𝑑𝑡 = 1

𝛽2𝐹𝑠

s𝐻D𝚲s,

𝑊3,3 =

∫ ∞

−∞

���𝑠 (1) (𝑡; 𝜼)���2 𝑑𝑡 = 𝐹𝑠

𝛽
s𝐻Vs,

𝑊4,2 =

∫ ∞

−∞
(𝑡 − 𝜏)3 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽4𝐹4
𝑠

s𝐻D3s,

𝑊4,3 = 𝑊5,2 =

∫ ∞

−∞
(𝑡 − 𝜏)2𝑠 (1) (𝑡; 𝜼)𝑠∗ (𝑡; 𝜼)𝑑𝑡

=
1

𝛽3𝐹2
𝑠

(
s𝐻D𝚲Ds − s𝐻Ds

)
,

𝑊4,4 =

∫ ∞

−∞
(𝑡 − 𝜏)4 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽5𝐹5
𝑠

s𝐻D4s,

𝑊5,3 =

∫ ∞

−∞

���𝑠 (1) (𝑡; 𝜼)���2 𝑑𝑡 = 1
𝛽2

(
s𝐻𝚲s + s𝐻VDs

)
,

𝑊5,4 =

∫ ∞

−∞
(𝑡 − 𝜏)3𝑠 (1) (𝑡; 𝜼)𝑠∗ (𝑡; 𝜼)𝑑𝑡

=
1

𝛽4𝐹3
𝑠

(
s𝐻D𝚲D2s − s𝐻D2s

)
,

𝑊5,5 =

∫ ∞

−∞

���𝑠 (1) (𝑡; 𝜼)���2 𝑑𝑡
=

1
𝛽3𝐹𝑠

(
s𝐻s + Ds𝐻VDs − 2𝑅𝑒

{
s𝐻VDs

})
.

B. Further Details on the Computation of W

Because the computation of the inner terms in W from the
baseband signal samples is not straightforward, we give the de-
tails for three terms (i.e., 𝑊4,2, 𝑊4,4 and 𝑊5,4). Notice that the
rest of the terms were computed for the delay/Doppler CRB in
[24]. Let us recall that if 𝑠(𝑡) ⇌ 𝑠( 𝑓 ), then 𝑡𝑠(𝑡) ⇌ 𝑗

2𝜋 𝑠
(1) ( 𝑓 ),

𝑡2𝑠(𝑡) ⇌ − 1
4𝜋2 𝑠

(2) ( 𝑓 ) and 𝑡𝑠 (1) (𝑡) ⇌ −𝑠( 𝑓 ) − 𝑓 𝑠 (1) ( 𝑓 ).
Moreover, we have the following mathematical equivalences,
which allow to operate with the signal samples,

𝑠( 𝑓 ) = 1
𝐹𝑠

𝑁2∑︁
𝑁1

𝑠(𝑛𝑇𝑠)𝑒− 𝑗2𝜋 𝑓

𝐹𝑠
𝑛
, (36)

𝑠 (1) ( 𝑓 ) = − 𝑗2𝜋
𝐹2
𝑠

𝑁2∑︁
𝑁1

𝑛𝑠(𝑛𝑇𝑠)𝑒− 𝑗2𝜋 𝑓

𝐹𝑠
𝑛
, (37)

𝑠 (2) ( 𝑓 ) = −4𝜋2

𝐹3
𝑠

𝑁2∑︁
𝑁1

𝑛2𝑠(𝑛𝑇𝑠)𝑒− 𝑗2𝜋 𝑓

𝐹𝑠
𝑛
. (38)

The terms 𝑊4,2, 𝑊4,4 and 𝑊5,4 are derived as follows:

𝑊4,2 =

∫ ∞

−∞
(𝑡 − 𝜏)3 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽4

∫ ∞

−∞
𝑡3 |𝑠(𝑡) |2 𝑑𝑡

=
1
𝛽4

∫ ∞

−∞
(𝑡2𝑠(𝑡)) (𝑡𝑠(𝑡))∗𝑑𝑡

⇌
1
𝛽4

∫ 𝐹𝑠
2

− 𝐹𝑠
2

− 1
4𝜋2 𝑠

(2) ( 𝑓 )
(
𝑗

2𝜋
𝑠 (1) ( 𝑓 )

)∗
𝑑𝑓 =

1
𝛽4𝐹4

𝑠

s𝐻D3s,

𝑊4,4 =

∫ ∞

−∞
(𝑡 − 𝜏)4 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝛽5

∫ ∞

−∞
𝑡4 |𝑠(𝑡) |2 𝑑𝑡

=
1
𝛽5

∫ ∞

−∞
(𝑡2𝑠(𝑡)) (𝑡2𝑠(𝑡))∗𝑑𝑡

⇌
1
𝛽5

∫ 𝐹𝑠
2

− 𝐹𝑠
2

− 1
4𝜋2 𝑠

(2) ( 𝑓 )
(
− 1

4𝜋2 𝑠
(2) ( 𝑓 )

)∗
𝑑𝑓 =

1
𝛽5𝐹5

𝑠

s𝐻D4s,

𝑊5,4 =

∫ ∞

−∞
(𝑡 − 𝜏)3𝑠 (1) (𝑡; 𝜼)𝑠(𝑡; 𝜼)𝑑𝑡

=
1
𝛽4

∫ ∞

−∞
𝑡3𝑠 (1) (𝑡)𝑠∗ (𝑡)𝑑𝑡 = 1

𝛽4

∫ ∞

−∞

(
𝑡𝑠 (1) (𝑡)

) (
𝑡2𝑠∗ (𝑡)

)
𝑑𝑡

⇌
1
𝛽4

∫ 𝐹𝑠
2

− 𝐹𝑠
2

(
−𝑠( 𝑓 ) − 𝑓 𝑠 (1) ( 𝑓 )

) (
−1
4𝜋2 𝑠

(2) ( 𝑓 )
)∗

𝑑𝑓

=
1
𝛽4

∫ 𝐹𝑠
2

− 𝐹𝑠
2

1
4𝜋2 𝑠( 𝑓 )

(
𝑠 (2) ( 𝑓 )

)∗
𝑑𝑓

+ 1
𝛽4

∫ 𝐹𝑠
2

− 𝐹𝑠
2

1
4𝜋2 𝑓 𝑠 (1) ( 𝑓 )

(
𝑠 (2) ( 𝑓 )

)∗
𝑑𝑓

=
1

𝛽4𝐹3
𝑠

(
s𝐻D𝚲D2s − s𝐻D2s

)
.

C. Compact form Expression of Re {𝚽(𝜼)}
To obtain the compact form expression in terms of W, we

need to compute the terms QWQ𝐻 and (Qw) (Qw)𝐻
𝑤1

in (35),

(
QWQ𝐻

)
1,1

=
©­«
4𝜔2

𝑐𝑏𝑑Re{𝑤2} − 4𝜔𝑐𝑑 (1 − 𝑏)Im{𝑊3,2}
+(𝜔𝑐𝑏)2𝑤1 − 2𝜔𝑐𝑏(1 − 𝑏)Im{𝑤3}

+4𝜔2
𝑐𝑑

2𝑊2,2 + (1 − 𝑏)2𝑊3,3

ª®¬ ,(
QWQ𝐻

)
1,2

=

(
−𝜔2

𝑐𝑏𝑤
∗
2 − 2𝜔2

𝑐𝑑𝑊2,2 − 𝑗𝜔𝑐𝑏𝑤
∗
5

− 𝑗𝜔𝑐2𝑑𝑊∗
5,2 + (1 − 𝑏) (− 𝑗𝜔𝑐𝑊3,2 +𝑊∗

5,3)

)
,(

QWQ𝐻
)

1,3
= −𝜔2

𝑐𝑏𝑤
∗
4 − 2𝜔2

𝑐𝑑𝑊
∗
4,2 − 𝑗𝜔𝑐 (1 − 𝑏)𝑊∗

4,3,(
QWQ𝐻

)
2,2

= 𝜔2
𝑐𝑊2,2 + 2𝜔𝑐Im{𝑊5,2} +𝑊5,5,(

QWQ𝐻
)

2,3
= 𝜔2

𝑐𝑊
∗
4,2 − 𝑗𝜔𝑐𝑊5,4,
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(
QWQ𝐻

)
3,3

= 𝜔2
𝑐𝑊4,4, (39)

and

(
(Qw) (Qw)𝐻

𝑤1

)
1,1

=

©­­­­­«
(𝜔𝑐𝑏)2𝑤1 + 4𝜔2

𝑐𝑏𝑑 (1 − 𝑏)Re{𝑤2}
−2𝜔𝑐𝑏(1 − 𝑏)Im{𝑤3} + 4𝜔2

𝑐𝑑
2 |𝑤2 |2

𝑤1

−4𝜔𝑐 (1 − 𝑏)𝑑Im
{
𝑤∗

2𝑤3
𝑤1

}
+(1 − 𝑏)2 |𝑤3 |2

𝑤1

ª®®®®®¬
,

(
(Qw) (Qw)𝐻

𝑤1

)
1,2

=

©­­­«
−𝜔2

𝑐𝑏𝑤
∗
2 − 2𝜔2

𝑐𝑑
|𝑤2 |2
𝑤1

− 𝑗𝜔𝑐 (1 − 𝑏) 𝑤
∗
2𝑤3
𝑤1

+ (1 − 𝑏) 𝑤
∗
5𝑤3
𝑤1

− 𝑗𝜔𝑐𝑏𝑤
∗
5 + 𝑗𝜔𝑐2𝑑 𝑤∗

5𝑤2
𝑤1

ª®®®¬ ,(
(Qw) (Qw)𝐻

𝑤1

)
1,3

=

(
−𝜔2

𝑐𝑏𝑤
∗
4 − 2𝜔2

𝑐𝑑
𝑤2𝑤

∗
4

𝑤1

− 𝑗𝜔𝑐 (1 − 𝑏) 𝑤
∗
4𝑤3
𝑤1

)
,(

(Qw) (Qw)𝐻
𝑤1

)
2,2

= 𝜔2
𝑐

|𝑤2 |2

𝑤1
+ |𝑤5 |2

𝑤1
+ 2𝜔𝑐Im

{
𝑤2𝑤5
𝑤1

}
,(

(Qw) (Qw)𝐻
𝑤1

)
2,3

= 𝜔2
𝑐

𝑤2𝑤
∗
4

𝑤1
− 𝑗𝜔𝑐

𝑤5𝑤
∗
4

𝑤1
,(

(Qw) (Qw)𝐻
𝑤1

)
3,3

= 𝜔2
𝑐

|𝑤4 |2

𝑤1
. (40)

Finally, injecting (39) and (40) into (35), leads to the expres-
sion in (19).

D. Details on the Standard Narrowband Signal Model CRB

If the impact of the Doppler and acceleration parameters
in the received baseband signal is negligible, 𝑠(𝑡 − 𝜏0 (𝑡)) ≃
𝑠(𝑡 − 𝜏). Then, 𝑎(𝑡; 𝜼) = 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) 𝑠 (𝑡 − 𝜏), and

𝜕a(𝑡; 𝜼)
𝜕𝜼

= −Q𝝑𝑒− 𝑗𝜔𝑐 (𝑏 (𝑡−𝜏)+𝑑 (𝑡−𝜏)2) , (41)

with

Q =


− 𝑗𝜔𝑐𝑏 − 𝑗2𝜔𝑑 1 0

0 𝑗𝜔𝑐 0 0
0 0 0 𝑗𝜔𝑐

 , 𝝑 =


𝑠(𝑡; 𝜼)

(𝑡 − 𝜏)𝑠(𝑡; 𝜼)
𝑠 (1) (𝑡; 𝜼)

(𝑡 − 𝜏)2𝑠(𝑡; 𝜼)

 .
Again, Re {𝚽(𝜼)} can be expressed as in (35), with w and W
given now by

w = [𝑤1, 𝑤2, 𝑤3, 𝑤4]⊤ and W =


𝑤1 𝑤∗

2 𝑤∗
3 𝑤∗

4
𝑤2 𝑊2,2 𝑊∗

3,2 𝑊∗
4,2

𝑤3 𝑊3,2 𝑊3,3 𝑊∗
4,3

𝑤4 𝑊4,2 𝑊4,3 𝑊4,4

 .

Following the same procedure than for the wideband signal
case, we can compute QWQ𝐻 and (Qw) (Qw)𝐻

𝑤1
, which injected

into (35) lead to the narrowband CRB expressions in (25).
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