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Abstract. In this article, the principles of robust estimation are applied to the

standard basic time scale equation to obtain a new method of assigning weights to

clocks. Specifically, the Student’s t-distribution is introduced as a new statistical

model for an ensemble of clocks that are experiencing phase jumps, frequency jumps

or anomalies in their measurement links. The proposed robust time scale is designed

to mitigate the effects of these anomalies without necessarily identifying them, but

through applying a method of robust estimation for the parameters of a Student’s

t-distribution. The proposed time scale algorithm using the Student’s t-distribution

(ATST) is shown to achieve comparable robustness to phase jumps, frequency jumps,

and anomalies in the measurements with respect to the AT1 oracle time scale. The

AT1 oracle is a special realization of the AT1 time scale which corrects all anomalies

by having prior knowledge of their occurrences. The similar performance of ATST and

AT1 oracle suggests that the ATST algorithm is efficient for obtaining robustness with

no prior knowledge or detection of the occurrences of anomalies.

Keywords : Robust time scale, phase jumps, frequency jumps, inter-satellite links,

measurement anomalies

1. Introduction

A spatial reference frame is an important piece of information to understand the position

of an object. Similarly, a time reference frame is necessary to establish a meaningful

time stamp of an event. This type of reference frame is called a time scale, which is

defined using the timing information of an ensemble of clocks. The resulting time scale

provides a “virtual” or “paper” reference clock that achieves better stability than any

individual clock in the ensemble. A robust time scale is required in applications where

no manual corrections can be made, although the need for corrections is necessary. Such

applications can be remote, technologically limited, and deployed in harsh environments.

For example, a constellation of nanosatellites is simultaneously: i) limited by size,

weight, power, and cost of clock technologies, and ii) more prone to anomalies due

to the environment and time transfer methods. Specifically, malfunctioning clocks and

erroneous measurements are challenges that must be faced when generating a robust

time scale for space applications. Existing time scale algorithms consider the assignment
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of particular weights to each clock in an ensemble depending on their stability. For an

abnormally behaving clock, the associated stability is expected to be reduced. Hence,

the weights computed in time scale algorithms should be adapted to appropriately de-

weight anomalous clocks and measurements.

Many strategies of assigning weights to the clocks of an ensemble have been

investigated in the current literature. The primary solutions apply weights to the

differences between predictions of clock states and measurements of the clock time

differences. This is true for the AT1 algorithm [1–3] and is implicit in the composite

clock computed with a Kalman Filter (KF) [4–8]. Both of these time scale algorithms

perform somewhat optimally in the nominal case with different motivations in choosing

clock weights. Particular methodologies are proposed for the detection and correction of

different types of clock anomalies [2, 9–15]. A common limitation in the design of such

detection algorithms is the choice of a detection threshold that potentially constrains

the magnitude and types of anomalies that can be detected depending on the test

statistic being used. The contribution of this article autonomously mitigates anomalies

by adjusting clock weights according to a single set of observations and without a

limitation linked to a fixed threshold.

The AT1 algorithm is presented in this work as the state-of-the-art solution for

a time scale under normal operating conditions. Two separate methodologies have

been defined for robustifying the AT1 algorithm, each method detects and compensates

for either clock phase jumps or frequency jumps [2, 9]. It is expected that anomalies

occurring in the measurement links cannot be detected and corrected with the same

methods. A swarm of satellites will be heavily influenced by measurement noise that

is possibly contaminated by outliers. Hence, this work aims to introduce a new time

scale algorithm that better mitigates such measurement-based anomalies. To the best

knowledge of the authors, there are no existing investigations into generating a time

scale robust to both link anomalies and jump anomalies.

Anomaly detection is a significant field of research for clock models. This paper

studies an alternative to detection by mitigating clock anomalies using a robust

estimation algorithm. In a general sense, robust signifies a method that maintains

good performance in the absence of anomalies and does not lose significant performance

in the presence of a small number of anomalies, regardless if they are actively detected

or not. To confirm the validity of a robust time scale, it should perform as well as the

AT1 algorithm in the nominal case and the AT1 algorithm with perfect detection of

anomalies, herein referred to as AT1 oracle because it effectively knows the occurrence

of all anomalies before the moment they occur. With this knowledge, AT1 oracle reduces

the weights of any anomalous clock to zero at the exact time of the anomaly, any time

there is an anomaly and hence, prevents the time scale from being affected by individual

clock faults.

To design a robust time scale, the generated time scale should maintain good

frequency stability when abnormalities occur from either source (clocks or measurement

links). The proposed methodology to obtain a robust time scale is based on principles of
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robust statistics [16, 17]. More precisely, we assume that the combination of normal and

corrupted clock data is modeled by a Student’s t-distribution, which implicitly assumes

that the data has some probability of containing outliers. This distribution comes from a

family of heavy-tailed probability distributions that assigns non-zero probabilities to the

occurrence of outliers [16]. Therefore, the Maximum Likelihood Estimators (MLEs) for

the defining parameters of the Student’s t-distribution are robust by taking outliers into

account. The method of mitigating the impact of the outliers in an MLE is comparable

to the method of assigning weights to the clock measurements and building the time

scale. Hence, a robust time scale is proposed that takes advantage of this similarity.

This paper is organized as follows. Section 2 briefly introduces and summarizes

the Basic Time Scale Equation (BTSE). Section 3 presents the main contribution of the

paper. This contribution is a new time scale algorithm that uses a robust estimation

procedure to obtain weights for the clock phases. The methodology aligns with the

BTSE and provides a robust solution that does not require active detection of anomalies

yet remains robust in the presence of phase jumps, frequency jumps and link anomalies.

Finally, section 4 introduces a specific scenario that is simulated to replicate the clock

ensemble and anomalies expected in a swarm of nanosatellites. Comparisons are made

between the performances of the newly suggested algorithm, AT1 without any anomaly

detection, and the perfectly robust AT1 oracle algorithm.

2. Basic Time Scale Equation

The output of a time scale algorithm is the difference in time between each clock

contained in the ensemble and the mutual time scale xi,E(t) = hi(t) − hE(t), where

hi(t) indicates the absolute time of clock i, which is unobservable. Each clock can

then be synchronized because the time scale hE(t) is a common reference time. To

compute xi,E(t), the algorithm requires predictions of each of the clock phases x̂j,E(t),

measurements of the time differences between all of the clocks in the ensemble xji(t),

and weights assigned to each clock in the ensemble wj(t−τ), where τ is the time between

consecutive measurements. A time scale is then realized for an ensemble of N clocks

using the BTSE [18–21]:

xi,E(t) =
N∑
j=1

wj(t− τ) [x̂j,E(t)− xji(t)] , (1)

where the predictions, measurements, and weights can be defined differently for each

time scale algorithm. By default, the weights are computed at the previous epoch for

AT1 because the equation for the weights needs a previous computation of xi,E(t) to

estimate the prediction error at each step in time. Including anomaly detection in the

AT1 algorithm means that the weights that are computed after the first realization of

each xi,E(t) are used to recompute the BTSE and obtain a corrected xi,E(t) if an anomaly

is detected. This means the weights would be instead denoted as wj(t) in the BTSE.

The AT1 algorithm combined with perfect detection of any anomaly will be referred to
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as AT1 oracle to represent the case that any type or magnitude of anomaly is always

detected and the weights of the affected clocks are set to zero before the recomputation

of the BTSE.

The BTSE can also be explained as the solution to a system of N equations that

includes a constraint on the weighted average of the clock noise

N∑
j=1

wj(t− τ) (x̂j,E(t)− hj(t)) = 0, (2)

and relevant phase difference measurements (N−1 equations for the independent xji(t))

[18, 19]. The constraint (2) cannot be ensured because there is no direct access to hj(t).

However, the weights should compensate for this by minimizing the prediction errors.

This leads to an alternative expression for the BTSE:

xi,E(t) = hi(t) +
N∑
j=1

wj(t− τ) [x̂j,E(t)− hj(t)] . (3)

The aim is to estimate the instantaneous phase deviation of clock i from a theoretically

perfect time scale, denoted as hi(t). Errors between the predictions and observations are

expected to be responsible for the difference between our obtainable time scale and the

theoretically perfect time scale. Intuitively, the prediction errors ej(t) = x̂j,E(t)− hj(t)

can represent an unpredictable component, i.e., caused by stochastic processes only.

As indicated above, the weights should ideally reduce these stochastic components of

the clock phase to zero. Similarly, supplementary time scale equations could be used to

determine clock frequency and drift with independent weights that set the corresponding

stochastic components to zero [19]. Each of the terms in the BTSE will be detailed

independently for two different types of time scale algorithms below. Depending on the

algorithm, the methods of computing clock weights, and the definition of the statistics

will differ.

2.1. Measurement noise

Time scales are typically generated after pre-processing any source of measurement

noise. This means that the phase difference measurements that are substituted into the

BTSE are assumed to have negligible noise. In reality the measurement noise will be

more significant in a swarm of nanosatellites. Due to other constraints, the satellites

may not necessarily perform the required pre-processing to reduce measurement noise to

a negligible level. In the context of using inter-satellite links and pseudo-range solutions

to obtain the clock phase differences, the measurement noise is expected to vary as a

function of the relative inter-satellite distances. Hence, certain pairs of satellites could

provide better-quality measurements. This is an important factor to consider when

discussing the BTSE because the result will no longer provide a common reference. In
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presence of additive measurement noise, the BTSE can be rewritten as follows:

xi,E(t) =
N∑
j=1

wj(t− τ) [x̂j,E(t)− (xji(t) + nji(t))] , (4)

xi,E(t) =
N∑
j=1

wj(t− τ) [x̂j,E(t)− xji(t)]−
N∑
j=1

wj(t− τ)nji(t), (5)

with measurement noise nji(t) referring to the random noise on the specific link between

clocks i and j. For each clock i, the resulting estimate of xi,E(t) will depend on the

weighted sum of the noise on each link that includes clock i. In addition, anomalies in the

measurement process can cause certain links to have significantly greater measurement

noise than others. The measurements that are affected by anomalies should then be

given lower weights in the BTSE to minimize the impact of corrupted measurements.

3. Atomic Time Scale using the Student’s t-distribution

Ideally, a robust time scale can compensate for anomalies of a wide range of magnitudes

and types without any degradation in the nominal case. As was discussed above,

anomaly detection methods have constraints on the choice of test statistics and detection

thresholds depending on the type of anomaly. The objective of this section is to present

a new weighting procedure for the calculation of the BTSE that provides a robust time

scale not reliant on the detection or identification of specific anomalies. The weights

will be based on the MLE for the mean of the Student’s t-distribution, generating the

new Atomic Time scale using the Student’s T-distribution (ATST).

3.1. Measurements

The ATST algorithm will consider all unique pairs of satellites as sources of independent

phase difference measurements. Unique measurement noise is present on each satellite

link. As was defined in Section 2, the phase difference measurements are

zji(t) = xji(t) + nji(t). (6)

Anomalies in the measurement links can be represented by some outlier being added to

the noise on a specific link

ñji(t) = nji(t) + ∆nji(t). (7)

Phase difference measurements are grouped into sets of N − 1 measurements according

to the common reference clock i. This is also necessary for the BTSE to compute xi,E(t)

in the AT1 algorithm.
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3.2. Predictions

Identical to the AT1 prediction step, the proposed ATST algorithm assumes a second-

order polynomial to predict the clock phases

x̂i,E(t) = xi,E(t− τ) + τyi,E(t− τ) +
τ 2

2
di,E(t− τ). (8)

The true clock phase will deviate from the predictable clock phase by some random

amount according to the internal noises. The possibility of phase jumps and frequency

jumps will cause the clocks to sometimes deviate from the predictable clock by an

even greater amount than the standard clock models expect. The ATST algorithm

assumes that any anomaly in the clocks modifies the instantaneous true phase by some

unpredictable bias

h̃i(t) = hi(t) + ∆hi(t). (9)

These deviations are effectively outliers in the clock phases at a given instant in time.

The outliers due to clock anomalies can be observed in the prediction errors that are

defined as the difference between the predicted and true phases

x̂i,E(t)− h̃i(t) = ẽi(t) = ei(t) + ∆hi(t), (10)

where ei(t) is the prediction error in the case no anomaly occurred at time t. We make

this assumption at all time instants regardless if any anomaly occurs. Since the phase

state is also affected by frequency jumps, we expect that only modifying the assumption

on the phase prediction error is sufficient to achieve a robust result.

3.3. Residuals

The BTSE residuals can be expressed in terms of what is already considered to be

affected by anomalies, e.g., if there is an anomaly on clock j and/or on link ji:

rji(t) = x̂j,E(t)− zji(t), (11)

rji(t) = x̂j,E(t)− (h̃j(t)− hi(t) + ñji(t)), (12)

rji(t) = hi(t) + ej(t) + ∆hj(t)− nji(t)−∆nji(t). (13)

The above form of the residuals shows a collection of terms that represent the

unpredictability of each clock j and each link between clock j and the fixed clock i. The

residuals provide N assumed independent observations of the absolute phase of clock i.

It is assumed that the stochastic prediction errors ej(t) and measurement noise nji(t)

combined with the outliers due to internal anomalies ∆hj(t) and link anomalies ∆nji(t)

imply a Student’s t-distribution for rji(t). Additional assumptions allow simplification

of the parameters for the defining distribution. The measurement noise is assumed to be

zero mean with a uniform variance across all links, each link is independent of the other

links and link anomalies are random occurrences that could appear on any link. The
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internal clock noises are also considered independent, with random chances of suffering

from an anomaly. Consequently, the BTSE residuals follow the Student’s t-distribution:

rji(t) ∼ T
(
hi(t), σ

2
i (t), νi(t)

)
. (14)

The parameters of the above distribution depend only on the reference clock i because

the phase of clock i is kept fixed for the N residual samples, corresponding to the phase

difference measurements made with respect to clock i. That is, for each possible reference

clock i there is a unique distribution defined by: the mean xi,E(t), which provides the

phase offset of clock i from the designed time scale, the scale parameter σ2
i (t) relating to

the dispersion of every other clock compared to clock i, and the shape parameter νi(t)

describing how many anomalies are present that can affect the estimation of xi,E(t).

The shape factor νi(t) indicates how many of the residuals contain outliers, and the

magnitudes of those outliers.

A certain value of νi(t) corresponds to only one out of N residuals being affected

by an anomaly. If that anomaly increases to a significantly larger value, then νi(t)

decreases to correspond with longer tails of the distribution. If several measurements had

outliers, then νi(t) would also decrease to indicate a higher likelihood of those anomalies.

This allows us to deal with different mixtures of corrupted measurements by assigning

appropriate weights as long as the statistical assumption remains correct. Making a

robust estimate of the mean mitigates the anomalies modeled by the t-distribution and

provide a robust realization of the time scale. It is true that some measurements are

reused for different sets of residuals so there can be some level of correlation between the

dispersion and shape parameters for each of the possible reference clocks. Nevertheless,

the mean is the main parameter of interest and always remains unique to each reference

clock.

Note that theN measurements include rii(t) = hi(t)+x̂i,E(t)−hi(t) = x̂i,E(t), which

is simply the sum of the absolute phase of clock i and the prediction error for clock i.

This is the same form as rji(t) = hi(t) + x̂j,E(t) − hj(t), representing the observations

made by the other BTSE residuals which deviate from hi(t) by their corresponding

prediction errors. In other words, if the anomaly is on clock i, the residual rii(t) will

appear as an outlier compared to the other measurements that have all jumped due to

the common observation of clock i, which now deviates from the predicted value. The

number of clocks N must be sufficiently large for the statistical model to be efficient,

in this work N = 50 clocks is assumed to coincide with the available number of clocks

envisioned for a swarm of satellites. The assumption of the Student’s t-distribution

is verified for this number of clocks in Appendix A.1, which fits both a Gaussian and

Student’s t-distribution to the residuals in the presence of phase jumps, frequency jumps,

and link anomalies.
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3.4. Estimation of Parameters for the Student’s t-distribution

To generate the ATST, only the equations in the Expectation Maximization (EM)

algorithm are necessary to obtain a weighted average of BTSE residuals. More precisely,

the t-distributed BTSE residuals for a fixed clock i, i.e., rji(t) ∼ T (µi(t), σ
2
i (t), νi(t)),

have a mean that is equivalent to the offset of clock i from the generated ATST

time scale, i.e., xi,E(t). The parameters depend on the reference clock used for the

measurements but we use a generalized notation for the parameters and omit the

dependence on time to avoid complexity in the relevant subscripts. The reader is invited

to consult Appendix A for a more detailed explanation of the Student’s t-distribution

and the associated MLE to estimate the parameters µ, σ2, ν. As each of the parameters

of interest in the Student’s t-distribution depends on the other two, the MLEs of µ, σ2, ν

cannot be computed directly. However, it is well known that the Student’s t-distribution

can be represented by an infinite mixture of Gaussian distributions [22]:

rji ∼ N
(
µ,
σ2

vj

)
, vj ∼ G

(ν
2
,
ν

2

)
, (15)

where G(a, b) denotes a gamma distribution with parameters a and b. The joint PDF

of r = [r1,i, · · · , rN,i]
T and v = [v1, · · · , vN ]T provides the so-called complete likelihood

function. Taking the logarithm of the complete likelihood leads to:

lc(r,v) =
nν

2
− n log Γ

(ν
2

)
+

(
ν + 1

2
− 1

) N∑
j=1

log vj −
N

2
log(2π) (16)

−N
2
log
(
σ2
)
− 1

2

N∑
j=1

vj

[
ν +

(rji − µ)2

σ2

]
. (17)

Marginalizing the complete likelihood with respect to v yields the likelihood as described

in (A.2). This representation allows an iterative EM algorithm to be derived [22]. After

an initialization of the unknown parameters, the EM alternates between Expectation

(E) and Maximization (M) steps:

• Initialization: The location and scale parameters are initialized with the Gaussian

MLEs and the number of degrees of freedom is chosen to be small because that

will help minimize the number of iterations in case there is an anomaly without

necessarily increasing demand in the nominal case:

µ̂0 =
1

N

N∑
i=1

rji, (18)

σ̂2
0 =

1

N − 1

N∑
i=1

(rji − µ̂0)
2, (19)

ν̂0 = 3. (20)
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• E Step: At iteration k, given θ̂k−1 =
(
µ̂k−1, σ̂

2
k−1, ν̂k−1

)T
, the E step computes the

expectation of lc(z,v) with respect to the variables vi, which requires the following

computations

uj,k = E[vj|rji, θ̂k−1] =
ν̂k−1 + 1

ν̂k−1 +
(rji−µ̂k−1)2

σ̂2
k−1

, (21)

wj,k = E[log(vj)|rji, θ̂k−1] = ψ

(
ν̂k−1 + 1

2

)
− log

(
1

2

(
ν̂k−1 +

(rji − µ̂k−1)
2

σ̂2
k−1

))
,

(22)

and leads to the objective function Q

Q(θ; θ̂k) =
Nν

2
−N log Γ

(ν
2

)
+

(
ν + 1

2
− 1

) N∑
i=1

wj,k −
N

2
log(2π) (23)

−N
2
log
(
σ2
)
− 1

2

N∑
i=1

uj,k

[
ν +

(rji − µ)2

σ2

]
. (24)

• M Step: At iteration k, the M Step maximizes the Q function with respect to the

parameters µ, σ2, ν, which yields

µ̂k =

∑N
i=1 uj,krji∑N
i=1 uj,k

, (25)

σ̂2
k =

∑N
i=1 uj,k(rji − µ̂k−1)

2

N − 1
, (26)

ϕ

(
ν̂k
2

)
+

N∑
i=1

[uj,k − wj,k − 1] = 0. (27)

The solution to (27) is obtained through the application of Newton’s method, which

converges to a solution after few iterations. Consider the solution to (27) is the root

of the function f(νk), then Newton’s method allows us to iteratively approximate that

root by the following with each iteration n

νk,n+1 = νk,n −
f(νk,n)

f ′(νk,n)
, (28)

where the initial guess can be the previous estimate of the number of degrees of freedom,

νk,0 = ν̂k−1(t). The above is repeated until reaching a maximum number of iterations

or a chosen difference between consecutive approximations is reached.

Note that the initial value of the number of degrees of freedom is chosen to reduce

the number of iterations in the case we have outliers. This initialization does not affect

the results when there are no anomalies because the location and scale estimates will

already converge to the t-MLE using the Gaussian MLE. Note also that the estimator is

declared to have converged when a certain stopping rule has been reached. The stopping

rule is usually a minimum difference between estimates on consecutive iterations, say
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ε < 0.01, where ε is computed using all the parameters [23]. The resulting EM algorithm

is described in Algorithm 1:

Algorithm 1 Expectation Maximization for a Robust MLE

function tEM([r1,i(t), · · · , rN,i(t)])

Init.: µ̂0(t) =
1
N

∑N
j=1 rji(t), σ̂

2
0(t) =

1
N−1

∑N
j=1 (rji(t)− µ̂0(t))

2,ν̂0(t) = 3,

while ε > 0.01 do

uj,k =
ν̂k−1+1

ν̂k−1+
(rji−µ̂k−1)

2

σ̂2
k−1

, µ̂k =
∑N

j=1 uj,krji∑N
j=1 uj,k

, σ̂2
k =

∑N
j=1 uj,k(rji−µ̂k−1)

2

N−1
,

νk estimated as the solution of the following equation

ϕ
(νk
2

)
− ϕ

(
ν̂k−1 + 1

2

)
+

N∑
j=1

[uj,k − log(uj,k)− 1] = 0.

k = k + 1

end while

return µ̂k, σ̂
2
k, ν̂k,uj,k

end function

The following comment is appropriate: outliers in the data introduce a bias on the

estimate of the mean of the Gaussian distribution because the outlying measurements

have equal weight to every other measurement. The estimation of the mean of the

Student’s t-distribution is robust to anomalies because it assigns lower weights to less

probable measurements, i.e., outliers. For this reason, we are interested in using the

weights determined by the MLE for the Student’s t-distribution to produce a new robust

time scale. Next, the above EM algorithm is related to the key components of the BTSE

to demonstrate how the weighted average provided in the M step is equivalent to the

weighted average in the BTSE if the random variables are appropriately chosen.

3.5. Weights

Once the EM algorithm described above has converged, the normalized values of uj,k
used in the estimate of the mean act as the final weights on each of the BTSE residuals.

The terms uj,k are designed to mitigate outliers because a greater difference between

the data and the estimated mean results in a smaller weight. The robust estimates

of the scale parameter and number of degrees of freedom are also included in the

weight computation. Both these parameters do not change depending on clock j for

the residuals rji and hence do not affect the weights of individual clocks more than a

scaling factor. The estimate µ̂ is obtained according to a weighted average of the BTSE

residuals with the normalized weights wj = uj,k

/∑N
i=1 ui,k . Hence, the robust MLE of

the location parameter is equivalent to a BTSE with specifically designed weights. As

in the BTSE, each xi,E(t) is computed using a different clock i as the common reference
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for the measurements, and hence, the residuals. The ATST time scale is then obtained

xi,ATST(t) = tEM([r1,i(t), · · · , rN,i(t)]) =

∑N
j=1 uj,krji(t)∑N

j=1 uj,k
, (29)

where tEM(rji(t)) is the output from the EM algorithm and differs depending on which

set of residuals are used at the input. At each iteration of the EM algorithm, the weights

are further refined thanks to using the adapted estimates µ̂k−1 and σ̂2
k−1. The iterative

nature of the EM algorithm also inherently involves a re-computation of the BTSE at

each iteration. This is similar to the strategy for AT1 oracle which compensates for phase

jumps and frequency jumps by recomputing the BTSE using the weights computed at

time t. The ATST algorithm is essentially an extension of this procedure that re-adapts

the weights before each computation. However, instead of a detection threshold or a

priori knowledge on the occurrence of anomalies, ATST uses a convergence threshold.

Intuitively, the convergence is obtained quickly (often immediately) if no anomalies are

present. More iterations are needed when the initial estimate significantly deviates from

the first re-computation.

The ATST weighting procedure differs from the standard BTSE because each set of

residuals obtains a unique set of weights. That is, the weights are assigned to each unique

phase difference measurement and hence, the weights computed for estimating x1,ATST(t)

are not necessarily the same as the weights computed for x2,ATST(t). Despite this

variation in the weights used for each realization of the ATST, it can be demonstrated

that each estimate still results in a common time scale. By varying the weights according

to the residuals for each unique link j, i, the algorithm can observe increased deviations

due to anomalies in both the measurements and the clocks. Such errors result in reduced

weights to simultaneously deal with phase jumps, frequency jumps, and link anomalies.

The robustness of the ATST time scale to these types of anomalies is demonstrated in

the next section alongside the AT1 oracle.

Additionally, the weights computed according to the MLE defined above have

naturally ensured that there is no dominant clock by assigning very similar weights

at each point in time. This can be observed in Figure 1, where the weight for a single

clock in an ensemble of fifty clocks is concentrated around 1/50 except for time epochs

with anomalies. By keeping the weights of nominal clocks equally distributed around

1/50, the time scale will not be susceptible to sudden changes in clocks that have a

dominant weight at a certain time instant then face an anomaly at the next.

Figure 1 shows only the weights of the three clocks that are affected by anomalies

as shown in the histograms of Figure A2. We can observe a reduction in weights at

the corresponding time of the anomalies, except for the link anomalies. The weight of

a single clock should not necessarily be reduced because a single link has an anomaly,

even if that clock is part of the affected link. Instead, the ATST weight corresponding

to the affected measurement link is reduced. The weights associated with phase jumps

and link anomalies are only reduced for a short period, whereas the frequency jump

results in a weight that gradually rejoins the ensemble. The weights of the less stable
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clocks are reduced while the weights of the other clocks are increased somewhat equally

to compensate.
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Figure 1: Weights for clock 1 as defined by the ATST and AT1 oracle time scale when

clock 1 suffers from each of the different types of anomalies. When considering the link

anomalies, the weight defined by AT1 differs from AT1 oracle which sets the weight of

clock 1 to zero whenever an anomaly is on a link including clock 1.

The resulting ATST time scale should also have a frequency estimation procedure.

The ATST time scale is not concerned with robust estimation of the frequency, although

it would also be possible with the Student’s t-distribution [24]. Since the estimation of

xi,ATST(t) is already robust, we expect the first approximation of frequency to also be

robust. This frequency is defined as:

yi,s(t) =
xi,ATST(t)− xi,ATST(t− τ)

τ
. (30)

As a result, the same exponential filter as the AT1 algorithm can be applied, i.e.,

yi,ATST(t) =
yi,ATST(t− τ) +miyi,s(t)

1 +mi

. (31)

The time constant mi = 100 s is chosen based on the types of clocks involved, so the

ATST algorithm maintains some level of compatibility with mixtures of different types

of clocks. By using the same methodology of frequency updates as the AT1 algorithm,

we eliminate one aspect that could affect the relative performance of ATST and AT1.

The final comparison will be solely based on the different methods of assigning weights

to the BTSE residuals. At the beginning of the algorithm, the frequency estimate can

be initialized at zero for a first prediction of the phase. It is assumed that the drift

is negligible, so it is initialized at a value of zero and remains at zero throughout the

duration of the simulation. With the complete definitions of the estimations used, the

ATST algorithm is presented in Algorithm 2:
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Algorithm 2 ATST Time Scale Generation

Init.: x̂i,ATST(0) = 0, yi,ATST(0) = 0, di,ATST(0) = 0,

for 11τ ≤ t ≤ tf do

x̂i,ATST(t) = xi,ATST(t− τ) + τyi,ATST(t− τ) + τ2

2
di,ATST(t− τ),

ŷi,ATST(t) = yi,ATST(t− τ) + τdi,ATST(t− τ),

di,ATST (t) = di,ATST (t− τ),

for 1 ≤ i ≤ N do

rji(t) = x̂j,ATST(t)− zji(t), for j = 1, · · · , N
xi,ATST(t) = tEM([r1,i(t), · · · , rN,i(t)]),

i = i+ 1,

end for

yi,s(t) =
xi,ATST(t)−xi,ATST(t−τ)

τ
,

yi,ATST (t) =
ŷi,ATST(t)+miyi,s(t)

1+mi
,

t = t+ τ .

end for

4. Robustness of ATST Time Scale

To verify that the ATST time scale is robust to the anomalies of interest, we will

assess three primary criteria: frequency stability, fractional frequency evolution, and

phase evolution. The frequency stability of the new time scale should be unaffected and

maintain similar performance in comparison to the AT1 oracle. If the ATST matches

the performance of AT1 oracle, then it can be concluded that it is sufficiently robust to

the tested anomalies. There should be no observable jumps or outliers in the frequency

or phase of the time scale at any point in time. Measurement noise is expected to place

a higher constraint on the frequency stability of the time scale, but anomalies in the

links should not add to that constraint. Before presenting the results, the setup of the

simulated data is explained and justified for the application of a swarm of nanosatellites.

4.1. Simulated data

Simulated clocks are used for the realization of the time scale to more easily mimic the

case of a swarm of fifty nanosatellites. The characteristic noise models for potential

clocks to be used in the swarm are defined using the specifications of Oven Controlled

Crystal Oscillators (OCXO). The simulation methodology and how it can be extended

to other types of clocks is explained in Appendix B. The noise variance levels of each

simulated OCXO clock were varied randomly to obtain unique stochastic behaviours.

The size and power consumption of the individual clocks is important for space-

based timing technologies, especially for those to be used in nanosatellites. As a

result, the OCXO is preferred for large-scale nanosatellite constellations because it

achieves these requirements at a lower price than Cesium or Rubidium atomic clocks

that could potentially fit in nanosatellite applications. However, clocks installed in
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nanosatellites are more susceptible to anomalies due to limitations on the available

protection. OCXO clocks are sensitive to their environment and have a more restrictive

stability performance. Therefore, an ensemble of similar OCXO clocks is a good example

of an application that needs a robust time scale algorithm.

A specific interval between measurements is fixed based on the mission of the swarm.

For this work, the interval chosen is 10 s to be compatible with scientific observations

of short-duration events. This results in many measurements being made over a day,

hence increasing the likelihood of experiencing anomalies. The proportion of anomalies

is then assumed to be one phase jump per clock, one frequency jump per clock, and one

anomaly per inter-satellite link at random times over a 6 hour simulation period. To

investigate each type of anomaly independently, three separate simulations are made,

each with only one type of anomaly occurring in the swarm. A final simulation is also

conducted to analyze the effects of a mixture of the investigated anomalies occurring

randomly in the swarm.

4.2. Metrics

The phase evolution of the time scales is a visualization of their equivalent virtual clocks.

To obtain the phase of the time scales we simply take the difference between the output

of the BTSE and the simulated clock data

hi(t)− xi,E(t) = hi(t)− (hi(t)− hE(t)) = hE(t). (32)

The fractional frequency of the time scales is obtained by taking the first difference of

the phase

yE(t) =
hE(t)− hE(t− τ)

τ
. (33)

For clarity purposes, the frequency offsets are removed from the phase of the time scales

by subtracting the averages of their frequencies over the whole simulation period ȳE

hE(t) := hE(t)− tȳE. (34)

Finally, the OADEV is computed according to the standard formula for a given set of

phase samples [25, 26]

σ2
y(τ) =

1

2(M − 1)

M−2∑
t=0

(
hE(t+ 2τ)− 2hE(t+ τ) + hE(t)

τ

)2

, (35)

where M − 2 realizations of the time scale phase are available, restricting the maximum

sampling interval to τ = M−2
2

. Confidence intervals are included on the computed

values of OADEV to indicate the increase in uncertainty of the OADEV as the number

of samples decreases for higher sampling intervals [27].

The ATST time scale should be validated under nominal conditions before

evaluating the responses to the anomalies of interest. Figure 2 displays the phase,
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frequency, and frequency stability of the ATST algorithm alongside the AT1 algorithm

without any anomalies.
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Figure 2: Nominal performances of the ATST and AT1 oracle time scales using the

above-mentioned ensemble of fifty OCXO clocks. The OADEV (c) compares the time

scales to a singular OCXO clock to show the improvement in stability with respect to

a single clock. Note that the ATST performance is very close to that of “AT1 oracle”.

Error bars on the OADEV are included to indicate the 68 % confidence interval for the

simulation period used.

4.3. Measurement Noise

The effect of Gaussian measurement noise on the time scales should be presented

before assessing the effects of link anomalies. Figure 3 displays the phase, frequency,

and frequency stability of the ATST algorithm alongside the AT1 algorithm and

measurement noise, referred to below as link noise. The magnitude of the noise variance

is chosen such that it exceeds the Allan deviation of the individual clocks in the ensemble

at the measurement interval of 10 s. This noise is assumed to be a white phase

modulation noise. This is chosen to illustrate the impact of measurement noise on

the two different time scales.

As shown in Figure 3c, the short-term OADEV of the time scales is affected

according to the OADEV of the link noise. Since the measurement noise is injected

in the time scale equation, there is a magnitude of noise variance at which the short-

term stability of the time scale becomes worse than that of the individual clocks in the

ensemble. At this point, the objective of the time scale to provide a virtual clock better

than any individual clocks is not achieved. Anomalies in the measurement noise will

effectively increase the variance of the link noise and hence, the short-term stability.

As a result, a negligible level of measurement noise can become significant enough to

deteriorate the time scale if anomalies in the measurements are not properly treated.
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Figure 3: Performances of the time scales using the above-mentioned ensemble of fifty

OCXO clocks and a uniform noise on every satellite link with variance σ2
n = 10−19.

Each time scale algorithm is comparable in nominal frequency stability with and

without measurement noise. The measurement noise is shown to increase the short-

term Allan deviation equivalently for both time scales. This means neither time scale

is necessarily preferred for applications with Gaussian measurement noise.

4.4. Results in presence of anomalies

Anomalies in both the clocks and the measurements are analyzed in this section for

both ATST and AT1 oracle. Note that AT1 has no specialized method of dealing with

measurement anomalies. The AT1 oracle algorithm simply mitigates the anomalies by

setting the weights of the clocks in the affected measurement links to zero, assuming

it knows exactly which links are affected by anomalies. It is likely that several links

are affected by anomalies a throughout the measurement process, so each unique link is

simulated with an anomaly at a random point in time.

Figure 4 displays the phase, frequency, and ADEV of ATST, AT1, and AT1 oracle

for the jump type anomalies in absence of measurement noise. The anomalies are

investigated separately by introducing a single phase jump on each clock or a single

frequency jump on each clock in two different simulations. The magnitudes are randomly

distributed values with zero mean and a standard deviation of 100 ns, and 100 ns/s for

the phase jump and the frequency jump, respectively. The resulting maximum values

faced are then approximately equal to the 3σ values, i.e., ±300 ns for phase jumps

and ±300 ns/s for frequency jumps. This is to illustrate a scenario that has a more

significant impact on the time scale created with fifty clocks. The magnitudes tested in

this article are presented so that the impact is visible on the ensemble of 50 clocks. For

conciseness of this article, other simulations with smaller or larger anomaly magnitudes

are available in the companion technical report [28].

Figures 4b and 4e demonstrate spikes in the frequency of AT1 without anomaly

compensation. Nevertheless, both AT1 oracle and ATST are able to compensate

the investigated phase jump and frequency jump anomalies. Outliers with similar

magnitudes to the phase jumps are introduced on every unique link to generate the
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link anomalies. This magnitude of the link anomalies in Figure 6 is chosen to cause the

resulting contaminated measurement noise to exceed the original measurement noise

with a variance of 10−19.

Phase jumps cause intermediate frequency values to be outliers at the time of

the anomaly and as a result, introduce a loss in frequency stability for AT1 without

any treatment of anomalies. This is seen in the OADEV of the OCXO clock in

Figure 4c. Phase jumps can also cause frequency jumps in the non-robust time scales

because the frequency approximations are significantly affected by the phase jump,

which consequently affect the following prediction of phase if the frequency time constant

is not high enough. This is visible in Figure 4b, where the effect of a phase jump on the

frequency of AT1 is identical to that seen in Figure 4e for a frequency jump anomaly

at the same point in time. Link anomalies introduce unexpected measurements in the

clock phase differences, also producing outliers in the frequency of the non-robust time

scale. As a result, the short-term OADEV is increased for the AT1 time scale without

anomaly mitigation.
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Figure 4: Time scale performance with phase jumps (top row) and frequency jumps

(bottom row) each with order of magnitude randomly assigned in the interval -300 to

300 in the units of ns or ns/s, respectively.

Figure 5 demonstrates that the ATST weights differ to the AT1 weights while still

managing to compensate the anomalies. In response to a frequency jump, the ATST

weight remains low for some period before it is allowed to increase, which is likely related
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to the exponential filter on the frequency estimates. The weights are increased much

more quickly in response to the other anomalies. This could be considered advantageous

because the effective number of clocks is not reduced for a long period of time as is the

case for the AT1 algorithm.

3000 4000 5000 6000 7000 8000 9000
0

0.01

0.02

0.03

0.04
AT1 oracle

ATST

AT1

(a) Phase jumps.

3000 4000 5000 6000 7000 8000 9000
0

0.01

0.02

0.03

0.04

0.05
AT1 oracle

ATST

AT1

(b) Frequency jumps.

6000 6500 7000 7500 8000 8500
0

0.01

0.02

0.03

0.04
AT1

ATST

AT1 oracle

(c) Link anomalies.

Figure 5: Weights for clock 1 as defined by the ATST and AT1 oracle time scale when

every clock in the ensemble suffers from an anomaly at some point int time. Compared

to Figure 1, the weights are seen to change more frequently due to anomalies occurring

in other clocks in the ensemble.

Figures 6a, 6b, and 6c present the robustness of the ATST time scale to link

anomalies. This is a novel contribution because the measurement anomalies have

previously been neglected in the design of time scales. The AT1 oracle time scale

has a priori knowledge of the link anomalies and sets weights wj(ta) and wi(ta) to zero

for a link anomaly on measurement zji(ta), removing all link anomalies perfectly. The

AT1 oracle time scale provides the performance limit for the best method to deal with

link anomalies, serving as a good basis for comparing the proposed ATST time scale.

Since ATST remains just as stable as AT1 oracle in both the long and short terms,

experiences no jumps in frequency, and retains continuity in phase evolution, it can be

concluded that ATST is robust to all of these anomalies, as designed in section 3.
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Figure 6: Time scale performance with link anomalies with randomized amplitudes for

each jump with a maximum order of magnitude of 300 ns. The base measurement noise

without anomalies is normally distributed with zero mean and a variance of σ2
n = 10−19.
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One advantage of using the ATST algorithm is that it does not require the

establishment of some method to detect and identify link anomalies. The ATST

time scale is robust to phase jumps, frequency jumps, and link anomalies, without

differentiating between the anomalies. Assuming the Student’s t-distribution as a model

of the BTSE residuals results in an estimate of the mean that automatically considers

outliers in the data when they are present. When there is no anomaly, the assumption

of t-distributed residuals naturally simplifies to a Gaussian assumption. The basis of

using the Student’s t-distribution to assign weights encompasses all of these types of

anomalies in the same assumption. This is supported in the results shown in Figure

7, where phase jumps, frequency jumps and link anomalies are all present throughout

the simulation period. The performance in presence of all anomalies is proven to be

robust because the ATST time scale maintains similar performance to the AT1 oracle.

Robustness to all anomalies without need to differentiate between them is beneficial in

the context of a swarm of satellites because it is not simple to identify the types of

anomalies or their sources.
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Figure 7: Time scale performance with a combination of all of the above anomalies with

the same orders of magnitude but at different times throughout the simulation period.

The weaknesses of the ATST algorithm include identification of anomalies,

minimum sample size, computational complexity, and heterogeneity of clock weights.

The ATST algorithm does not differentiate between different types of anomalies so is

more suitable for autonomous applications where anomalies are unavoidable in both

clocks and measurements but identifying their source is not a priority. The BTSE

residuals can only be modeled by the Student’s t-distribution if enough samples (clocks)

are available. Generally, time scales aim to use a high number of clocks to gain the

best improvement in frequency stability, so sample size should not be a problem but

raises questions for functionality with missing data. The efficiency for the EM algorithm

with different sample sizes indicates a minimum number of samples (clocks) that are

required to converge to the optimal estimator performance [29]. If observations are

obtained exactly from a Student’s t-distribution, a minimum of around 25 clocks should

obtain a mean square error close to the optimal value. The difference between the actual
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distribution of clock residuals and the Student’s t-distribution is also not taken into

account so this number could vary depending on the type and magnitude of anomalies

experienced because the assumption of the Student’s t-distribution is not a good enough

fit for the data. Additionally, ATST computes the weights and the time scale in an

iterative EM algorithm, which introduces computational complexity and may impact

the ability to apply the time scale in real time applications. Lastly, by assigning the

weights approximately equal for all clocks, the potential to benefit from different types

of clocks is lowered. That does not necessarily mean the ATST cannot be adapted for

mixtures of different clock types, but the current version is optimized for homogeneous

clocks.

5. Conclusion

Critical space-based timing applications require a robust time scale. Specifically, a

focus on nanosatellites places constraints on the clock technologies and any associated

protections. For that reason, this paper has designed a new robust time scale algorithm

that was tested for a homogeneous swarm of OCXO clocks. Assuming a Student’s t-

distribution for the model of the contaminated data has allowed a novel definition of

the clock weights leading to a new time scale referred to as ATST.

The proposed ATST algorithm is capable of compensating for phase jumps,

frequency jumps, and link anomalies by using the weights associated with the MLE

for the mean of the t-distribution. By assuming perfect detection of anomalies, the

AT1 oracle time scale was generated as a best case scenario to compare to ATST. All

investigated types of anomalies are considered the same in the ATST algorithm, i.e.,

a source of undesired errors that can be modeled by a specific statistical distribution

designed for outliers. The resulting time scale is therefore robust to each of the types of

anomalies, even providing equivalent performance to the AT1 oracle time scale. This is

expected to be useful in applications with no need to identify anomalies but to mitigate

their effects autonomously. The new robust time scale is constrained to ensembles of

homogeneous clocks for now, but a path forward for including diversity in clock types

is possible and worth investigating.

Further work should be conducted on appropriately accounting for the benefits of

different types of clocks in the ATST algorithm. Besides the extension to other types of

clocks, certain other types of anomalies can be expected for space-based applications.

For instance, the periodic temperature changes caused by orbits could introduce periodic

changes in clock behavior. The Student’s t-distribution may not be the ideal statistical

model to use for this type of anomaly so other models should be explored. Another

anomaly to explore is the impact of losing links between certain satellites or losing a

satellite completely for the proposed time scale. Missing data is expected to be an

important issue in the application of a satellite swarm so a robust time scale should also

be designed to manage missing measurements of different scales. Finally, the application

of the robust time scale to position determination and scientific observations should be
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investigated.

Appendix A. Maximum Likelihood Estimator - Student’s t-distribution

To understand how the ATST attains robustness, the Student’s t-distribution should be

explained. The parameters of the Student’s t-distribution are the location parameter µ,

which is also the mean value, the scale parameter σ2, and the shape parameter given

by the number of degrees of freedom ν. The parameters σ2 and ν are related to the

variance of the distribution by

var(X) = σ2 ν

ν − 2
, (A.1)

for ν > 2. The degrees of freedom parameter is directly related to the level of

abnormality of the distribution. Indeed, as ν → ∞ the t-distribution approaches

a Gaussian distribution. Conversely, low values of ν coincide with a probability

distribution heavily impacted by outliers. Figure A1 illustrates this connection between

the shape parameter and the normality of the data.
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Figure A1: Examples of the Student’s t-distribution probability density functions for

different numbers of degrees of freedom ν. The distribution converges to a Gaussian

distribution for infinite value of ν. Lower values of ν correspond to heavier probabilities

in the tails, hence a greater proportion of contaminated data.

The nature of the shape parameter allows the estimates of the mean and variance

to simplify to the normal case if the data is not contaminated with outliers. This

is of interest because a robust time scale should not sacrifice performance in the

nominal case to mitigate anomalies. The probability density function (PDF) of the

Student’s t-distribution has a specific form that assigns a larger probability of outliers

occurring compared to other statistical models. An MLE is defined based on knowledge



A Robust Time Scale Using the Student’s t-distribution 22

of a likelihood function that fits the observations being made. In this work, the

Student’s t-distribution is used to model the distribution of clock data contaminated

with anomalies. The likelihood of a sample distributed according to the univariate

Student’s t-distribution is defined as follows [16]:

L(z;µ, σ2, ν) =
N∏
i=1

p(zi;µ, σ
2, ν) =

N∏
i=1

1√
νπσ2

Γ
(
ν+1
2

)
Γ
(
ν
2

) [1 + 1

ν

(
zi − µ

σ

)2
]− (ν+1)

2

,

(A.2)

with z = (z1, ..., zN)
T . The parameters µ, σ2, and ν are the mean, scale, and shape

parameters, respectively. The MLE for each of the parameters µ, σ2, and ν aims to

identify the values of those parameters that maximize the likelihood (A.2) for a given

sample z: [
µ̂, σ̂2, ν̂

]T
= arg max

µ,σ2,ν

{
L(z;µ, σ2, ν)

}
. (A.3)

To simplify the derivations, it is usual to derive the expression of the MLE by minimizing

the negative log-likelihood [30][
µ̂, σ̂2, ν̂

]T
= arg min

µ,σ2,ν

{
− logL(z;µ, σ2, ν)

}
. (A.4)

In the case of the univariate Student’s t-distribution, the MLEs of the unknown

parameters are the solutions to the following equations

∂ log(L)

∂µ
=
ν + 1

σ4

N∑
i=1

zi − µ

ν +
(
zi−µ
σ

)2 = 0,
∂ log(L)

∂σ2
=

1

σ2
+
ν + 1

σ4

N∑
i=1

(zi − µ)2

ν +
(
zi−µ
σ

)2 = 0,

(A.5)

∂ log(L)

∂ν
= ϕ

(ν
2

)
− ϕ

(
ν + 1

2

)
+

N∑
i=1

[
ν + 1

ν +
(
zi−µ
σ

)2 − log

(
ν + 1

ν +
(
zi−µ
σ

)2
)

− 1

]
= 0,

(A.6)

where ϕ(x) = ψ(x)− log(x), x > 0, and the digamma function ψ(x) is given by:

ψ(x) =
d

dx
log [Γ(x)] =

Γ
′
(x)

Γ(x)
. (A.7)

Appendix A.1. Statistics of Anomalous Clocks

Figure A2, which shows the histograms of the BTSE residuals with phase jumps,

frequency jumps, and outliers on the measurement links. The figure is divided into

columns by time epochs: before, during, and after the occurrence of an anomaly ta.

The rows of Figure A2 are separated by type of anomaly. The distributions are plotted

using the corrupted clock as the common reference for all the measurements. This shows

that even with an identical anomaly on all phase difference measurements, the inclusion
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of rii(t) causes the distribution to still be affected by an outlier. As expected, the BTSE

residuals at the time immediately before an anomaly are well approximated by both a

Gaussian distribution and the t-distribution. Hence, we expect a good performance for

the MLE of the t-distribution in the nominal case. At the epoch of the anomalies, there

are outliers in the residuals, corresponding to the magnitude of the jumps. For these

histograms, fifty OCXO clocks are simulated with a jump on a single clock at t = ta with

a magnitude of 10−8. The units of the jumps are compatible with the relevant states,

i.e., 10 ns for phase and measurement jumps, and 10 ns/s for a jump in the fractional

frequency yi.

(a) t = ta − τ . (b) t = ta. (c) t = ta + τ .

(d) t = ta − τ . (e) t = ta. (f) t = ta + τ .

(g) t = ta − τ . (h) t = ta. (i) t = ta + τ .

Figure A2: Student’s t PDFs are shown to model the statistics of the residuals with

and without an outlier on one of the measurement links.

The outlier in the measurement only occurs at t = ta, so we see that the distribution

returns to a Gaussian distribution at the time after the link anomaly. We observe

the phase jump resulting from the frequency jump is also 10 ns, but this outlier does

not disappear at the following time epoch because the frequency has changed for the



A Robust Time Scale Using the Student’s t-distribution 24

anomalous clock. Lastly, the phase jump outlier switches sides at the following epoch

due to the prediction error over that interval (τ = 10 s) being significantly different

than from the now-shifted phase. Nevertheless, the t-distribution provides a good fit

for each of the resulting distributions.

Appendix B. Simulated clocks

The simulation of OCXO clocks has been conducted based on the phase noise of a

typical OCXO clock. The resulting simulator uses characteristics of the Allan Variance

(AVAR) for the typical clock and generates the phase of new clocks such that the AVAR

remains similar. Specifically, the slopes of the AVAR over certain sampling intervals are

linked to the different types of noises experienced in oscillators by some constant term

hα, where α specifies the type of noise [25, 27]. A summary of the general types of noise

experienced by an oscillator are:

• White Phase Modulation (WPM), α = 2,

• Flicker Phase Modulation (FPM), α = 1,

• White Frequency Modulation (WFM), α = 0,

• Flicker Frequency Modulation (FFM), α = −1,

• Random Walk Frequency Modulation (RWFM), α = −2.

Some of these noises are more dominant than the others so the AVAR does not always

display all of them. Nevertheless, all of the above values of α are used in the clock

simulator. The power spectral density for clock phase can be written as a sum of each

of the different noise types

Sx(f) =
Sy(f)

(2πf)2
=

1

(2πf)2

2∑
α=−2

hαf
α =

0∑
β=−4

gβf
β, (B.1)

where gβ = hα

(2π)2
and β = α − 2. The variance associated with each clock noise is then

computed

Qd(β) =
gβ

2(2π)β
(
τβ+1
0

) . (B.2)

The clock noises are then generated independently according to the discrete generation

method highlighted in [31]. Finally, the noise terms are summed to produce a simulation

of an oscillator that has the same noise characteristics as the original source of the hα
coefficients. Slight variability has been added to the variance Qd(β) for each simulated

clock to ensure that they do not have identical frequency stability. The simulator can

similarly use the typical OADEV of any other type of clock to replicate several simulated

clocks with similar performance. Figure B1 shows the phase, frequency, and OADEV

for a small collection of simulated OCXO clocks. It is clear that they each have their

unique characteristic noise but maintain the typical performance for an OCXO clock.
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Figure B1: Examples of 5 simulated OCXO clocks and the diversity of the clock

behaviours.
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[29] R. Piché, “Cramér-Rao Lower Bound for Linear Filtering with t-Distributed

Measurement Noise,” in Proc. 19th International Conference on Information

Fusion, (Heidelberg, Germany), 2016.

[30] S. M. Kay, Fundamentals of statistical signal processing. Prentice Hall signal

processing series, Englewood Cliffs, N.J: Prentice-Hall PTR, 1993.

[31] N. Kasdin and T. Walter, “Discrete simulation of power law noise (for oscillator

stability evaluation),” in Proceedings of the 1992 IEEE Frequency Control

Symposium, pp. 274–283, 1992.

http://perso.tesa.prd.fr/jyt/publis_fichiers/Tech_report_ATST_Anomaly_mag.pdf
http://perso.tesa.prd.fr/jyt/publis_fichiers/Tech_report_ATST_Anomaly_mag.pdf

	Introduction
	Basic Time Scale Equation
	Measurement noise

	Atomic Time Scale using the Student's t-distribution
	Measurements
	Predictions
	Residuals
	Estimation of Parameters for the Student's t-distribution
	Weights

	Robustness of ATST Time Scale
	Simulated data
	Metrics
	Measurement Noise
	Results in presence of anomalies

	Conclusion
	Maximum Likelihood Estimator - Student's t-distribution
	Statistics of Anomalous Clocks

	Simulated clocks

