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Questions de cours

1. (1pt) Quelles quantités doit-on connaitre pour chaque classe pour mettre en oeuvre le classifieur
Bayésien ?
On doit connaitre les probabilités a priori de chaque classe P(w;) et les densités de probabilité
conditionnelles a chaque classe p(x|w;).

2. (1pt) Représenter graphiquement un exemple de sous apprentissage et un exemple de sur-
apprentissage pour un probléme de classification a deux classes.
Voici deux exemples vus en cours de sous apprentissage (& gauche) et de sur apprentissage (a
droite) :

3. (1pt) Lorsque les classes sont linéairement séparables, un des classifieurs SVM vu en cours est
défini par le probleme suivant :

min 1 ||'w||2
weRHER | 2

s.c. yi (whe; —b) > 1,Vie {1,...,n}

Rappeler 'utilité de la contrainte y; ('wT:ni — b) >1,vie{l,...,n}.
Lorsque les classes sont linéairement séparables, on impose la contrainte y; (wTa:,- — b) = 1 pour
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les vecteurs supports. La contrainte y; (chcZ- — b) > 1,Vi € {1,...,n} indique que le vecteur x;
est situé du bon coté de I'hyperplan séparateur.

4. (1pt) On considere lalgorithme CART pour classifier des points de R? notés x; = (1, ;) de
densité continue. Expliquer comment est définie chaque branche de ’arbre.
A chaque itération de I’algorithme, on choisit la composante x;; ou x;5 qui minimise Ppiy+ Prig,
ou iy, est I'indice de Gini de la branche de gauche, ig est 'indice de Gini de la branche de droite
et P = =L, Pp = "&£ sont les proportions d’éléments contenus dans les deux branches de I'arbre.
Si on choisit la premiere composante, la branche de I'arbre de droite correspond a x;; > seuil
et celle de gauche correspond a x;; < seuil, ot “seuil” est la moyenne arithmétique des deux
éléments ordonnés maximisant Ppiy + Prig.

5. (1pt) On désire effectuer un clustering de ’ensemble X = {1,3,7,8,15} a I'aide de la méthode
de classification hiérarchique ascendante. Que est le dendogramme obtenu pour la distance

d(X;, X;) = min{d(z,y),z € X;,y € X;}7?
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Exercice : ACP

Pour cet exercice, on dispose d’un tableau de données regroupant diverses informations physiologiques
et sur la pratique sportive d’'un ensemble d’individus. Pour chaque personne, on connait les variables
suivantes : 1) age, 2) taille (£ en m), 3) poids (p en kg), 4) indice de masse corporelle (IMC, calculé
par la formule %), 5) pourcentage de masse grasse, 6) quantité d’eau bue en moyenne pendant une
séance de sport (en L), 7) nombre de calories brilées par séance, 8) durée moyenne d’'une séance de
sport, et 9) nombre de jours d’entrainement par semaine.

On se propose dans cet exercice de faire une Analyse en Composantes Principales de ce tableau de
données. Voici une représentation des données projetées sur les 2 premiers axes ainsi que le cercle des
corrélations :
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Composante principale 2 (20%)

Cercle des corrélations
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. (1pt) Si on note \; et Ag les 2 plus grandes valeurs propres de la matrice de variance-covariance

’ ’ .7 . « . A
du tableau de données étudié, que peut-on dire ici du rapport = ?

L’inertie de I'axe 1 < est de 0.4, et I'inertie de 'axe 2 <2— est de 0.2. On en déduit que le
Z]' Aj Ej Aj

rapport i—;, égal au rapport des inerties, est égal a 2.

(Ipt) Que signifie la treés faible longueur de la fleche représentant la variable Age sur le cercle
des corrélations ?

Cette représentation de la variable Age signifie qu’elle n’est corrélée ni avec ’axe 1 ni avec I'axe 2
de ’ACP. C’est pour cette raison qu’elle est trés mal représentée dans le plan des deux premieres
composantes principales.

(2pts) La projection des individus sur les 2 premiers axes de ’ACP fait apparaitre différents
profils, correspondant aux clusters étiquetés A, B, C' et D. En vous référant au cercle des
corrélations, proposez une description des individus appartenant a chacun des clusters.

L’axe 1 est négativement corrélé au pourcentage de masse grasse, et positivement corrélé avec
les variables liées a I’exercice physique. Un individu ayant une haute valeur sur I'axe 1 est donc
certainement tres athlétique. L’axe 2 est lui fortement positivement corrélé au poids et a 'TMC.
Les individus du cluster B sont donc d’un poids moyen et tres athlétiques, les individus du
cluster C sont légers et athlétiques, ceux du cluster D sont globalement assez légers mais peu
athlétiques, et enfin les individus du cluster A sont plutot lourds et moyennement athlétiques.

(2pts) Commentez les assertions suivantes en vous appuyant sur les figures : justifiez vos
réponses !

a. Les individus plus lourds ont tendance a avoir un pourcentage de masse grasse plus élevé.

b. Les individus qui font le plus de séances par semaine ont tendance a faire des séances plus
longues.

c. Les individus qui brulent le plus de calories pendant une séance sont ceux qui boivent le
plus.

d. Les individus plus grands ont tendance a boire plus pendant une séance.
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a. La variable Poids est pratiquement orthogonale a la variable Pourcentage de masse grasse,
les deux variables sont donc quasiment décorrélées, I'assertion a. est fausse.

b. L’angle entre les 2 variables concernées est tres faible, les 2 variables sont donc fortement
corrélées, 'assertion b. est vraie.

c. Les variables Eau bue et Calories brulées sont presque orthogonales, donc 'assertion c. est
fausse.

d. La variable Taille est mal représentée sur le cercle des corrélations, on ne peut donc rien
conclure sur sa corrélation avec les autres variables.
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Exercice 2 : Moindres carrés

On s’intéresse a la durée moyenne du jour (photopériode), en heures, au cours d’'une année dans une
ville donnée (par exemple Paris). On suppose que la photopériode varie de maniére quasi sinusoidale

au cours de 'année.

On souhaite ajuster le modele suivant :

2m 2
P(t) = asi b
(t) = asin (365 ) + bcos (365 ) +c,

ou t est le numéro du jour dans 'année (1 a 365), P(t) est la durée du jour (en heures), et a,b, ¢ sont

des scalaires.

On dispose des mesures suivantes :

Jour ¢; \1 30 60 90 120 150 180

210

240

270

300 330 360

DuréedujourPi(h)‘Sﬁ 92 10.8 125 140 156 16.0 151 13.6 119 103 9.0 &7

1. (2 pts) Formulez le probleme d’ajustement du modele sinusoidal de la photopériode au sens des
moindres carrés. Donnez la formulation matricielle en explicitant le vecteur de parametres 3 et

les matrices A et B associées.

Le vecteur des parametres 3 contient les parametres du modele, i.e. 3 =
Le probleme d’estimation de 8 au sens des moindres carrés s’écrit donc :

1 <& o or 2
i - 51 7 b 7 - 1Dz )
(b.0) %3 1 Z( o (365 ) oo (365 ) e )

ce que 'on peut réécrire

1R3 QH I
en posant

sin (3@5 tl) cos (565 tl) 1

A— sin (% tg) cos (% tz)

27rt 27Tt

Sin(sess ) COS(565 ) 1

avec n = 13.

[a,b. "

2. (1 pt) Quelle est la dimension de la matrice A7 De quel rang doit étre la matrice pour que le

probleme admette une solution ?

La matrice A est de dimension 13 x 3, et doit étre de rang 3 afin que la matrice AT A soit

inversible.

3. (1 pt) Donnez I'expression analytique de la solution a partir des matrices A et B.

B=(ATA)'ATB.

olt (AT A)71 AT est la matrice pseudo-inverse de A.
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Exercice 3 : Algorithme K-means et algorithme EM

On considere 5 points de R? définis comme suit

oo Ee-[o- [+ [

que 'on désire regrouper en deux classes w; et ws.

1. Algorithme kmeans : Représenter ces 5 points et expliquer quel sera le résultat de la premiere
itération de l'algorithme k-means si les représentants initiaux des deux classes sont m; =
(—1,0)T et my = (—1,1)7 (on entourera les points associés & w; et ceux associés & ws).
Déterminer les représentants utilisés a la seconde itération. (1pt)

Les représentants utilisés a la seconde itération seront donc

., C+D+E [-2
m2 T: .

4
3

2. Algorithme EM : Une autre maniere de regrouper les 5 points en deux classes est de modéliser
la loi de ces points a l'aide d’'un mélange de deux lois gaussiennes dont les parametres peuvent
étre estimés a 1’aide de 'algorithme EM.

(a) (2pts) Déterminer la probabilité d’associer le point E & la classe w; lors d’une itération
de Palgorithme EM, si les parametres de 'itération précédente sont m; = (—1,0)T, m, =
(—1,1)T, 3 = 3y =1, (o1 I est la matrice identité de taille 2 x 2) et m = 7y = % Vérifier
que cette probabilité est inférieure a 0.5.

D’apres le cours, cette probabilité est

71-lp(fglyE = wlae) (1)

Plyg = wi|E,0) = .
(yE 1| ) Zizl 7-‘-kp(Ekl/E = Wk, 0)
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Comme les matrices de covariance des densités p(F|yp = w1, 0) et p(E|lyg = ws, 0) sont
égales a la matrice identité, on a

1 1 1 1
p(Elyg = w1, 0) = %exp (_i(E — ml)T(E — ml)) = %exp (—§HE — m1H2> ;

et donc

1 1
plEle = 2,6) = - exp (515~ mal?)

Mais [|[E —my||? =4 et ||E — my||* =1, donc

1 1 1
P(Elyp = w1, 0) = —exp (=2) et p(Elyp = w3,0) = 5 exp <—§> .

Donc
exp (—2) B 1

exp (—2) + exp (—%) ~ l+exp (%)

p(yE:w1|E7e) - <

N | —

(2pts) On suppose qu’a une itération de I’algorithme EM, les responsabilités associées a la
classe wy sont §(1]A) = §(1|B) = 0.8 et §(1|C) = §(1]D) = §(1|E) = 0.3. Déterminer 7,
I’estimation de la probabilité a priori de la classe w; et ji; estimation du vecteur moyenne
de la classe w; issues de ces responsabilités.

D’apres le cours, on a :

. nj . a .
o _J e )
= avec n; ; (7]9),
et
1 G
A== S ol
L —
Donc
. 2x08+43x03 1
e 5 Y
et

_ 2008-08-09-06-03] [-18/25
M=51 —08+03+03+06 || 4/25 |



