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Questions de cours

1. (1pt) Quelles quantités doit-on connâıtre pour chaque classe pour mettre en oeuvre le classifieur
Bayésien ?
On doit connâıtre les probabilités a priori de chaque classe P (ωi) et les densités de probabilité
conditionnelles à chaque classe p(x|ωi).

2. (1pt) Représenter graphiquement un exemple de sous apprentissage et un exemple de sur-
apprentissage pour un problème de classification à deux classes.
Voici deux exemples vus en cours de sous apprentissage (à gauche) et de sur apprentissage (à
droite) :

3. (1pt) Lorsque les classes sont linéairement séparables, un des classifieurs SVM vu en cours est
défini par le problème suivant : min

w∈Rn,b∈R

{
1
2
‖w‖2

}
s.c. yi

(
wTxi − b

)
≥ 1,∀i ∈ {1, . . . , n}

Rappeler l’utilité de la contrainte yi
(
wTxi − b

)
≥ 1, ∀i ∈ {1, . . . , n}.

Lorsque les classes sont linéairement séparables, on impose la contrainte yi
(
wTxi − b

)
= 1 pour
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les vecteurs supports. La contrainte yi
(
wTxi − b

)
≥ 1,∀i ∈ {1, . . . , n} indique que le vecteur xi

est situé du bon coté de l’hyperplan séparateur.

4. (1pt) On considère l’algorithme CART pour classifier des points de R2 notés xi = (xi1, xi2) de
densité continue. Expliquer comment est définie chaque branche de l’arbre.
À chaque itération de l’algorithme, on choisit la composante xi1 ou xi2 qui minimise PLiL+PRiR,
où iL est l’indice de Gini de la branche de gauche, iR est l’indice de Gini de la branche de droite
et PL = nL

n
, PR = nR

n
sont les proportions d’éléments contenus dans les deux branches de l’arbre.

Si on choisit la première composante, la branche de l’arbre de droite correspond à xi1 > seuil
et celle de gauche correspond à xi1 < seuil, où “seuil” est la moyenne arithmétique des deux
éléments ordonnés maximisant PLiL + PRiR.

5. (1pt) On désire effectuer un clustering de l’ensemble X = {1, 3, 7, 8, 15} à l’aide de la méthode
de classification hiérarchique ascendante. Que est le dendogramme obtenu pour la distance

d(Xi, Xj) = min{d(x, y), x ∈ Xi, y ∈ Xj}?

Exercice : ACP

Pour cet exercice, on dispose d’un tableau de données regroupant diverses informations physiologiques
et sur la pratique sportive d’un ensemble d’individus. Pour chaque personne, on connâıt les variables
suivantes : 1) âge, 2) taille (t en m), 3) poids (p en kg), 4) indice de masse corporelle (IMC, calculé
par la formule p

t2
), 5) pourcentage de masse grasse, 6) quantité d’eau bue en moyenne pendant une

séance de sport (en L), 7) nombre de calories brûlées par séance, 8) durée moyenne d’une séance de
sport, et 9) nombre de jours d’entrâınement par semaine.

On se propose dans cet exercice de faire une Analyse en Composantes Principales de ce tableau de
données. Voici une représentation des données projetées sur les 2 premiers axes ainsi que le cercle des
corrélations :
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6. (1pt) Si on note λ1 et λ2 les 2 plus grandes valeurs propres de la matrice de variance-covariance
du tableau de données étudié, que peut-on dire ici du rapport λ1

λ2
?

L’inertie de l’axe 1 λ1∑
j λj

est de 0.4, et l’inertie de l’axe 2 λ2∑
j λj

est de 0.2. On en déduit que le

rapport λ1
λ2

, égal au rapport des inerties, est égal à 2.

7. (1pt) Que signifie la très faible longueur de la flèche représentant la variable Age sur le cercle
des corrélations ?
Cette représentation de la variable Age signifie qu’elle n’est corrélée ni avec l’axe 1 ni avec l’axe 2
de l’ACP. C’est pour cette raison qu’elle est très mal représentée dans le plan des deux premières
composantes principales.

8. (2pts) La projection des individus sur les 2 premiers axes de l’ACP fait apparâıtre différents
profils, correspondant aux clusters étiquetés A, B, C et D. En vous référant au cercle des
corrélations, proposez une description des individus appartenant à chacun des clusters.
L’axe 1 est négativement corrélé au pourcentage de masse grasse, et positivement corrélé avec
les variables liées à l’exercice physique. Un individu ayant une haute valeur sur l’axe 1 est donc
certainement très athlétique. L’axe 2 est lui fortement positivement corrélé au poids et à l’IMC.
Les individus du cluster B sont donc d’un poids moyen et très athlétiques, les individus du
cluster C sont légers et athlétiques, ceux du cluster D sont globalement assez légers mais peu
athlétiques, et enfin les individus du cluster A sont plutôt lourds et moyennement athlétiques.

9. (2pts) Commentez les assertions suivantes en vous appuyant sur les figures : justifiez vos
réponses !

a. Les individus plus lourds ont tendance à avoir un pourcentage de masse grasse plus élevé.

b. Les individus qui font le plus de séances par semaine ont tendance à faire des séances plus
longues.

c. Les individus qui brulent le plus de calories pendant une séance sont ceux qui boivent le
plus.

d. Les individus plus grands ont tendance à boire plus pendant une séance.
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a. La variable Poids est pratiquement orthogonale à la variable Pourcentage de masse grasse,
les deux variables sont donc quasiment décorrélées, l’assertion a. est fausse.

b. L’angle entre les 2 variables concernées est très faible, les 2 variables sont donc fortement
corrélées, l’assertion b. est vraie.

c. Les variables Eau bue et Calories brûlées sont presque orthogonales, donc l’assertion c. est
fausse.

d. La variable Taille est mal représentée sur le cercle des corrélations, on ne peut donc rien
conclure sur sa corrélation avec les autres variables.
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Exercice 2 : Moindres carrés

On s’intéresse à la durée moyenne du jour (photopériode), en heures, au cours d’une année dans une
ville donnée (par exemple Paris). On suppose que la photopériode varie de manière quasi sinusöıdale
au cours de l’année.

On souhaite ajuster le modèle suivant :

P (t) = a sin

(
2π

365
t

)
+ b cos

(
2π

365
t

)
+ c,

où t est le numéro du jour dans l’année (1 à 365), P (t) est la durée du jour (en heures), et a, b, c sont
des scalaires.

On dispose des mesures suivantes :

Jour ti 1 30 60 90 120 150 180 210 240 270 300 330 360
Durée du jour Pi (h) 8.6 9.2 10.8 12.5 14.0 15.6 16.0 15.1 13.6 11.9 10.3 9.0 8.7

1. (2 pts) Formulez le problème d’ajustement du modèle sinusöıdal de la photopériode au sens des
moindres carrés. Donnez la formulation matricielle en explicitant le vecteur de paramètres β et
les matrices A et B associées.
Le vecteur des paramètres β contient les paramètres du modèle, i.e. β = [a, b, c]T .
Le problème d’estimation de β au sens des moindres carrés s’écrit donc :

min
(a,b,c)∈R3

1

n

n∑
i=1

(
a sin

(
2π

365
ti

)
+ b cos

(
2π

365
ti

)
+ c− Pi

)2

,

ce que l’on peut réécrire

min
β∈R3

1

2
||Aβ −B||2,

en posant

A =


sin
(

2π
365

t1
)

cos
(

2π
365

t1
)

1
sin
(

2π
365

t2
)

cos
(

2π
365

t2
)

1
... ... ...

sin
(

2π
365

tn
)

cos
(

2π
365

tn
)

1

 et B =


P1

P2

...
Pn

 ,
avec n = 13.

2. (1 pt) Quelle est la dimension de la matrice A ? De quel rang doit être la matrice pour que le
problème admette une solution ?
La matrice A est de dimension 13 × 3, et doit être de rang 3 afin que la matrice ATA soit
inversible.

3. (1 pt) Donnez l’expression analytique de la solution à partir des matrices A et B.

β̂ = (ATA)−1ATB.

où (ATA)−1AT est la matrice pseudo-inverse de A.
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Exercice 3 : Algorithme K-means et algorithme EM

On considère 5 points de R2 définis comme suit

A =

[
1
0

]
, B =

[
−1
−1

]
, C =

[
−3
1

]
, D =

[
−2
1

]
, E =

[
−1
2

]
que l’on désire regrouper en deux classes ω1 et ω2.

1. Algorithme kmeans : Représenter ces 5 points et expliquer quel sera le résultat de la première
itération de l’algorithme k-means si les représentants initiaux des deux classes sont m1 =
(−1, 0)T et m2 = (−1, 1)T (on entourera les points associés à ω1 et ceux associés à ω2).
Déterminer les représentants utilisés à la seconde itération. (1pt)

Les représentants utilisés à la seconde itération seront donc

m1
1 =

A+B

2
=

[
0
−1

2

]
et m1

2 =
C +D +E

3
=

[
−2
4
3

]
.

2. Algorithme EM : Une autre manière de regrouper les 5 points en deux classes est de modéliser
la loi de ces points à l’aide d’un mélange de deux lois gaussiennes dont les paramètres peuvent
être estimés à l’aide de l’algorithme EM.

(a) (2pts) Déterminer la probabilité d’associer le point E à la classe ω1 lors d’une itération
de l’algorithme EM, si les paramètres de l’itération précédente sont m1 = (−1, 0)T , m2 =
(−1, 1)T , Σ1 = Σ2 = I2 (où I2 est la matrice identité de taille 2×2) et π1 = π2 = 1

2
. Vérifier

que cette probabilité est inférieure à 0.5.
D’après le cours, cette probabilité est

P (yE = ω1|E,θ) =
π1p(E|yE = ω1,θ)∑2
k=1 πkp(E|yE = ωk,θ)

. (1)
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Comme les matrices de covariance des densités p(E|yE = ω1,θ) et p(E|yE = ω2,θ) sont
égales à la matrice identité, on a

p(E|yE = ω1,θ) =
1

2π
exp

(
−1

2
(E −m1)

T (E −m1)

)
=

1

2π
exp

(
−1

2
‖E −m1‖2

)
,

et donc

p(E|yE = ω2,θ) =
1

2π
exp

(
−1

2
‖E −m2‖2

)
.

Mais ‖E −m1‖2 = 4 et ‖E −m2‖2 = 1, donc

p(E|yE = ω1,θ) =
1

2π
exp (−2) et p(E|yE = ω2,θ) =

1

2π
exp

(
−1

2

)
.

Donc

p(yE = ω1|E,θ) =
exp (−2)

exp (−2) + exp
(
−1

2

) =
1

1 + exp
(
3
2

) < 1

2
.

(b) (2pts) On suppose qu’à une itération de l’algorithme EM, les responsabilités associées à la
classe ω1 sont δ(1|A) = δ(1|B) = 0.8 et δ(1|C) = δ(1|D) = δ(1|E) = 0.3. Déterminer π̂1
l’estimation de la probabilité a priori de la classe ω1 et µ̂1 l’estimation du vecteur moyenne
de la classe ω1 issues de ces responsabilités.
D’après le cours, on a :

π̂j =
n̂j
n

avec n̂j =
n∑
i=1

δ(j|i),

et

µ̂j =
1

n̂j

n∑
i=1

δ(j|i)xi.

Donc

π̂1 =
2× 0.8 + 3× 0.3

5
=

1

2
,

et

µ̂1 =
2

5

[
0.8− 0.8− 0.9− 0.6− 0.3
−0.8 + 0.3 + 0.3 + 0.6

]
=

[
−18/25

4/25

]
.
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