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What is classification?

Machine Learning

Machine Learning is a field of study that gives computers the ability to learn
without being explicitly programmed.

Arthur Samuel (1959)

A computer program is said to learn from experience E, with respect to a task
T and a performance measure P, if its performance P on task T improves with
experience E.

Tom Mitchell (1998)
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What is classification?

2 main types of learning
Supervised learning

I An oracle (expert) provides a training set (data, labels) :

D = {(x(1), y(1)), ..., (x(m), y(m))}
I A model (predictor) is trained to minimize the difference between ground

truth and predicted labels.
I Often costly because it requires large databases to be annotated by

humans.

y continuous y discrete
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What is classification?

2 types of learning
In unsupervised learning, information should be inferred from data only (no
labels) :

D = {x(1), ...,x(m)}.

Dimension reduction Feature extraction

Clustering Density estimation
7/ 154
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What is classification?

Supervised learning

The supervised learning framework assumes we have observations (or data)
and labels (or targets) which constitute a training set, that we denote :

D = {(x(1), y(1)), .., (x(m), y(m))}.
The model is trained to reproduce the correspondences between observations
and labels.

x ŷblack box

The "black-box" model
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Example : Classification of Altimetric Signals
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Classification pipeline

Forme

Capteurs

Prétraitement

Apprentissage

Décision

Sensors	   Learning	  

Pa-ern	   Preprocessing	   Decision	  
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What is classification?

Classification pipeline: lab example

Forme

Capteurs

Prétraitement

Apprentissage

Décision

Sensors Learning

Pattern Preprocessing Decision

Compacity
Contrast
Texture
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Evaluating classifiers

Evaluating classifiers

x

ŷclassifier

In this example, y and ŷ ∈ {benign,malignant}
y is called the ground truth associated with x, while ŷ is the classifier
prediction.

How to assess the quality of a classifier?
What makes a good classifier?
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Evaluating classifiers

Accuracy

Accuracy: The accuracy measures the overall correctness of the classifier.

Accuracy =
Number of Correctly Classified Instances

Total Number of Instances

Example:
Let’s consider a binary classification task with 100 instances. The classifier
correctly classifies 85 instances. The accuracy is:

Accuracy =
85

100
= 0.85 (or 85%)
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Evaluating classifiers

Confusion Matrix

The confusion matrix provides a detailed view of a classifier’s performance.

Example:
Consider a binary classification task with 100 instances. The confusion matrix
for a classifier is as follows:

Predicted Negative Predicted Positive
Actual Negative 60 10
Actual Positive 5 25

The confusion matrix reveals:

I 60 True Negatives and 25 True Positives
I False Positives (in statistics, false alarms): 10
I False Negatives (in statistics, non detections): 5

In our lab example, this means the classifier tends to raise false alarms (i.e. to
predict cancer) more often than to miss actual cancers.
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Evaluating classifiers

Precision, Recall, and F1-score

Precision, recall, and F1-score evaluate the performance of a classifier in terms
of positive predictions.
Precision quantifies the proportion of correctly predicted positive instances out
of all instances predicted as positive.

Precision =
True Positives

True Positives + False Positives

Recall calculates the ratio of correctly predicted positive instances to the actual
number of positive instances.

Recall =
True Positives

True Positives + False Negatives

F1-score combines precision and recall into a single metric by calculating their
harmonic mean.

F1-score = 2× Precision× Recall
Precision + Recall
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Evaluating classifiers

Precision, Recall, and F1-score

Example:
Consider a binary classification task with 100 instances. The confusion matrix
for a classifier is as follows:

Predicted Negative Predicted Positive
Actual Negative 60 10
Actual Positive 5 25

Precision =
25

25 + 10
≈ 0.71

Recall =
25

25 + 5
≈ 0.83

F1-score = 2× 0.71× 0.83

0.71 + 0.83
= 0.76
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Empirical risk and Expected risk

Empirical risk: average prediction error on the training set.

Expected risk (or generalization risk) : average prediction error on the target
population... Unknown !

The training objective of any machine learning algorithm is to minimize the
Empirical Risk, but in fact what we are really interested in is to minimize the
Expected Risk.
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Under/Overfitting

We speak of underfitting when the learned model explains the training set too
poorly. Empirical risk is high.

We speak of overfitting when the learned model explains the training set too
well; this model then badly generalizes to the target population. Empirical risk
is low, but expected risk is high!

Underfitting Overfitting
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Underfitting/Overfitting

Under/Overfitting : model capacity

Models with low capacity compared to the task complexity will tend to
underfit, while models with large capacity will tend to overfit.
Image from [Goodfellow et al. 2015] Deep Learning
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Underfitting/Overfitting

Detecting Under/Overfitting

run 1

run 2

run 3

run 4

Cross Validation is a way to jointly evaluate empirical risk and expected risk
when the size of the dataset is limited.

In the case we have a sufficient number of data samples, we can split the
dataset into two parts for learning and testing.
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Classification

Notations
I K classes ω1, ..., ωK

I x = [x (1) , ..., x (p)]T measurements ∈ X = Rp

I A: set of possible actions a1, ..., aq where ak = “assign the vector x to the
class ωk”, ∀k = 1, ...,K

Definition

d :
X → A
x 7→ d(x)

Remark
Classification with reject option: A = {a0, a1, ..., aK} where a0 = “do not
classify the vector x”

24/ 154



Slides de cours
Statistical Classification

Bayesian rule

Bayesian Rule

Hypothesis: Probabilistic Model
I A priori probability of class ωk

P (ωk)

I Probability density function of the observation vector x conditionally to
class ωk

f (x |ωk )

Conclusion
I A posteriori probability that x belongs to class ωk

P (ωk |x ) =
f (x |ωk )P (ωk)

f (x)

with f (x) =
∑K
k=1 f (x |ωk )P (ωk).
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Example
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MAP Classifier

Definition

d∗ (x) = aj ⇔ P (ωj |x ) ≥ P (ωk |x ) , ∀k ∈ {1, ...,K}

Equiprobable Classes: Maximum Likelihood Classifier

d∗ (x) = aj ⇔ f (x |ωj ) ≥ f (x |ωk ) , ∀k ∈ {1, ...,K}

Property
The MAP classifier minimizes the probability of error
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Proof (2 classes)

Pe = P [d (x) = a1 ∩ x ∈ ω2] + P [d (x) = a2 ∩ x ∈ ω1]

= P [d (x) = a1 | x ∈ ω2]P (ω2) + P [d (x) = a2 | x ∈ ω1]P (ω1)

Let Ri = {x ∈ Rp/d(x) = ai} be the acceptance region for class ωi

Pe =

∫
R1

P (ω2) f (x |ω2 ) dx+

∫
R2

P (ω1) f (x |ω1 ) dx

= P (ω2)

[
1−

∫
R2

f (x |ω2 ) dx

]
+

∫
R2

P (ω1) f (x |ω1 ) dx

= P (ω2) +

∫
R2

[P (ω1) f (x |ω1 )− P (ω2) f (x |ω2 )] dx

= P (ω2)−
∫
R2

[P (ω2 |x )− P (ω1 |x )] f (x) dx

Pe is minimum when R2 = {x/P (ω2 |x ) > P (ω1 |x )}
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Probability of Error (K classes)

Definition

Pe =

K∑
k=1

P [d (x) = ak ∩ x /∈ ωk]

Property (admitted)

The MAP classifier minimizes the probability of error
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Gaussian Case

Densities

f (x |ωk ) =
1

(2π)p/2
√

det Σk
exp

[
−1

2
(x−mk)T Σ−1

k (x−mk)

]

General Case

d∗ (x) = ai ⇔ gi (x) ≥ gk (x) ∀k = 1, ...,K

with

gi (x) = − (x−mi)
T Σ−1

i (x−mi)− ln det Σi + 2 lnP (ωi)
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Gaussian Case

Classifier

Discriminant functions

Quadratic term + linear term
+ constant
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Identical covariance matrices (Σi = Σ)

Equiprobable classes - Centroid Distance Rule

d∗ (x) = ai ⇔ dM (x,mi) ≤ dM (x,mk) ∀k = 1, ...,K

where dM is the Mahalanobis distance

dM (x,mk) =

√
(x−mk)T Σ−1 (x−mk)

Non equiprobable classes: affine discriminant functions

d∗ (x) = ai ⇔
[
x− 1

2
(mi +mk)

]T
Σ−1 (mi −mk) ≥ ln P (ωk)

P (ωi)
, ∀k
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Exemple
I Exemple 1

En communications numériques, on veut transmettre un symbole x binaire défini par :

Classe 1 : x = 0
Classe 2 : x = 1

Le symbole émis x passe par un canal de transmission, où il est perturbé par un bruit n
supposé Gaussien centré de variance σ2. Le signal reçu est alors z = x+ n. Le problème
est de retrouver le symbole émis à partir du signal reçu.
1) Énoncez la règle de décision Bayésienne lorsque les deux valeurs 0 et 1 ont la même
probabilité d’apparition.
2) Calculer la probabilité d’erreur correspondante que l’on exprimera à l’aide de la
fonction de répartition de la loi normale N (0, 1) définie par

F (x) =

∫ x

−∞

1√
2π

exp

(
−u

2

2

)
du.

Montrer que cette probabilité d’erreur tend vers 0 lorsque σ tend vers 0 et commenter.
3) Comment la règle de décision Bayésienne est modifiée si les deux valeurs x = 0 et
x = 1 ont des probabilités d’apparition notées P0 et P1 ? Interpréter ce résultat lorsque
P0 > P1.
4) On envoie N fois le même symbole x et on reçoit zi = x+ ni. En supposant que les
variables aléatoires n1, ..., nN sont indépendantes, quelle est la règle de décision
Bayésienne dans le cas de deux symboles équiprobables ?

I Exemple 2
Généralisation à 4 symboles x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
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Parametric methods

Principle

Assume that the distribution of x = (x1, ..., xn)T is characterized by a
parametric probability density function, which depends on an unknown
parameter vector θ ∈ Rp and estimate this parameter vector using a method
considered in statistics

I Maximum likelihood method
I Method of moments
I MMSE or MAP estimators
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Lab example

We choose to model the distributions of each class with a Gaussian model.
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Lab example
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Lab example

In this example, the model is too simple and seems to underfit. However the
results on the test set are satisfying.
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A non-parametric method: the k-nearest neighbor rule

the nearest neighbor rule

d(x) = aj if the nearest neighbor of x belongs to ωj

The observed vector x is affected to the class of its nearest neighbor.

Inequality of Cover and Hart

P ∗ ≤ P1 ≤ P ∗
(

2− K

K − 1
P ∗
)

The k-nearest neighbor rule
x is assigned to the class most common amongst its k-nearest neighbors (with
a given distance measure)
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Probability of error

Inequalities

P ∗ ≤ Pk ≤ P ∗ +
1√
ke

or P ∗ ≤ Pk ≤ P ∗ +

√
2P1

k

Approximations
When P ∗ is small, the following results can be obtained

P1 ≈ 2P ∗ and P3 ≈ P ∗ + 3 (P ∗)
2
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Lab example

Test accuracy: 87.5% Test accuracy: 91.2% Test accuracy: 93.8%

I A smaller K tends to perfectly reproduce the training data but generalizes
poorly (overfitting)

I A larger K tends to regularize the decision boundary, which helps
generalization.
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Hyperparameter selection

Comparing and selecting classifiers.

I We just saw how a “k-nearest-neighbors” (knn) classifier works and the
rationale behind such a non-parametric method.

I How should we select k? is a remaining question.

S-fold cross-validation
I S-fold cross-validation involves taking the available data and partitioning it

into S groups. Then S − 1 of the groups are used to train a set of models
that are then evaluated/tested on the remaining group (termed ζ in the
sequel).

I This procedure is then repeated for all S possible choices for the held-out
group, indicated here by the red blocks, and the performance scores from
the S runs are then averaged.
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S-fold Cross-Validation

4-fold cross-validation

run 1

run 2

run 3

run 4

CV score for each k and ζ(j) is the jth group used as testing data

CV (k) = 1
S

∑S
run j=1

1
|ζ(j)|

∑
(x′,y′)∈ζ(j) c(f

D−ζ(j)
knn (x′), y′)

Leave-One-Out (LOO) score for each k

CV(k) = 1
n

∑n
i=1 c(f

D−{(xi,yi)}
knn (xi), yi)
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Some classification results

Bayesian Classification (Gaussian densities)

Classes Ocean Desert Forest Ice

Ocean 99.6 0.0 0.0 0.0

Desert 0.0 95.3 1.8 0.0

Forest 0.0 4.4 97.7 0.8

Ice 0.4 0.4 0.5 99.2

1-PPV Method

Classes Ocean Desert Forest Ice

Ocean 100 0.0 0.0 0.0

Desert 0.0 96.0 5.4 0.0

Forest 0.0 4.0 93.2 0.0

Ice 0.0 0.0 1.4 100
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Some classification results

5-PPV Method

Classes Ocean Desert Forest Ice

Ocean 100 0.0 0.0 0.0

Desert 0.0 93.8 5.9 0.3

Forest 0.0 6.2 93.2 0.0

Ice 0.0 0.0 0.9 99.7

Neural Networks

Classes Ocean Desert Forest Ice

Ocean 100 0.0 0.0 0.0

Desert 0.0 96.0 5.4 0.0

Forest 0.0 4.0 92.8 0.8

Ice 0.0 0.0 1.8 99.2
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Introduction and motivation

Support vector machines (SVMs)

Learning set

B = {(x1, y1) , ..., (xn, yn)}
where x1, ...,xn are n vectors of Rp and y1, ..., yn are binary variables

yi = 1 if xi ∈ ω1, yi = −1 if xi ∈ ω2

Hyperplane definition

gw,b(x) = wTx− b = 0

with
gw,b(xi) > 0 if xi ∈ ω1, gw,b(xi) < 0 if xi ∈ ω2

Classification rule

f(x) = sign [gw,b(x)] (1)
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Introduction and motivation

Illustration
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Optimal separating hyperplane

Problem formulation

Margin of xi with label yi (algebraic distance to the hyperplane)

γi (w̃) =
yi
(
wTxi − b

)
‖w‖

with w̃ = (w, b) (xi is correctly classified by (1) if γi (w̃) > 0)

Margin of the learning set

γB (w̃) = mini∈{1,...,n}
yi
(
wTxi − b

)
‖w‖

Since γB (aw̃) = γB (w̃), ∀a > 0, w̃ is not unique!

Constraints for the hyperplane: one forces the training samples that are the
closest to the hyperplane to satisfy

yi
(
wTxi − b

)
= 1⇒ mini∈{1,...,n}yi

(
wTxi − b

)
= 1

The vectors xi satisfying yi
(
wTxi − b

)
= 1 are called support vectors.
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Optimal separating hyperplane

Problem formulation

Canonical hyperplane

yi
(
wTxi − b

)
≥ 1, ∀i = 1, ..., n

Classifier margin for a canonical hyperplane

γB (w̃) =
1

‖w‖

We want to maximize the margin, i.e. minimize ‖w‖, which leads to the

Primal formulation min
w∈Rn,b∈R

{
1
2
‖w‖2

}
s.c. yi

(
wTxi − b

)
≥ 1,∀i ∈ {1, . . . , n}

Simple problem since the cost function to optimize is quadratic and the
constraints are linear!
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Optimization

Lagrangian

L (w̃, α) =
1

2
wTw −

n∑
i=1

αi
[
yi
(
wTxi − b

)
− 1
]

Set to zero the partial derivatives of L with respect to b and w

n∑
i=1

αiyi = 0 and w =

n∑
i=1

αiyixi

Kuhn and Tucker multipliers
For a convex optimization problem (convex function f(x) to optimize and
convex constraints Gi (x) ≤ 0), an optimality condition is the existence of
parameters αi ≥ 0 such that the Lagrangian derivative is zero, i.e.,

L′(x) = f ′ (x) +
n∑
i=1

αiG
′
i (x) = 0

with αi = 0 if Gi (x) < 0 (i.e., αiGi (x) = 0).

62/ 154



Slides de cours
Support Vector Machines

Optimization problem

Dual problem

Solve L′(x) = 0

w =
∑

Support vectors

αiyixi = xTY α (2)

with α = (α1, ..., αn)T , x = (x1, ..., xn)T , Y = diag (y1, ..., yn) and{
αi = 0 if the constraint is a strict inequality
αi > 0 if the constraint is an equality

After replacing the expression of w in the Lagrangian, we obtain

U (α) = −1

2
αTY

(
xxT

)
Y α+

n∑
i=1

αi

that has to be maximized in the domain defined by αi ≥ 0, ∀i and∑n
i=1 αiyi = 0.
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Optimization problem

Dual problem

Dual formulation
max
α∈Rn

{
− 1

2
αTY

(
xxT

)
Y α+

∑n
i=1 αi

}
s.c.


n∑
i=1

αi yi = 0

αi ≥ 0, ∀ i ∈ {1, . . . , n}

The solutions of this dual problem are also solutions of the primal problem.

Simple optimization problem
Quadratic (hence convex) function to optimize and linear constraints
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Optimization problem

Remarks

Decision rule
Norm of the solution w0

‖w0‖2 =
∑

support vectors

α0
i (1 + yib) =

∑
support vectors

α0
i

because of the constraint
∑n
i=1 αiyi = 0.

Classifier margin
γ = 1

‖w0‖
=
(∑

α0
i

)−1/2

Classification rule for a vector x

f(x) = sign

( ∑
xi support vectors

α0
i yix

T
i x− b0

)
, b0 =

1

2

(
wT

0 x
+ +wT

0 x
−
)
,

where x+ (resp. x−) is a support vector belonging to the 1st (resp. 2nd) class.
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Optimization problem

Remarks

The quadratic optimization can only converge when the data is linearly
separable:

No convergence Convergence
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Non-separable case: the "soft-margin SVM" classifier

Non-linear separability

Real-world data are often noisy and may not be linearly separable.

In that case, the SVM does not admit any solution to the primal (nor dual)
optimization problem.
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Non-separable case: the "soft-margin SVM" classifier

Soft-margin SVM: Slack variables

We introduce slack variables ξi ≥ 0 to relax the canonical hyperplane
constraints:

yi
(
wTxi − b

)
≥ 1− ξi ∀ i ∈ {1, . . . , n}
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Non-separable case: the "soft-margin SVM" classifier

Soft-margin SVM: problem formulation

The problem becomes:
min

w∈Rn,b∈R
(ξ1,...,ξn)∈Rn

{
1
2
‖w‖2 + C

n∑
i=1

ξi

}

u.c.
{
yi
(
wTxi − b

)
≥ 1− ξi ∀i ∈ {1, . . . , n}

ξi ≥ 0 ∀i ∈ {1, . . . , n}

C is a hyperparameter that can be tuned using cross-validation:

I When C is 0, the problem is the same as in the "hard-margin" SVM.
I When C is low (but not 0), we allow many points to violate the margin.
I As C becomes larger, less and less points can violate the margin (when
C =∞, one tends to the hard-margin SVM)
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Non-separable case: the "soft-margin SVM" classifier

Lab example

This simple linear model underfits but generalizes well!
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Non-separable case: the "soft-margin SVM" classifier

Extensions

The ν-SVM classifier

Minimize
1

2
‖w‖2 +

1

n

n∑
i=1

ξi − νγ

with the constraints

yi
(
wTxi − b

)
≥ γ − ξi,∀i,

ξi ≥ 0, ∀i,
γ ≥ 0

This formulation introduces a new hyperparameter ν that is an upper bound of
the fraction of points that violate the margin.
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Non-linear preprocessing - kernels
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Non-linear preprocessing - kernels

Non-linear preprocessing

Search a non-linear transformation φ : Rp → Rq ensuring linear separability.

Classical example
The classes χ1 = {(1, 1) , (−1,−1)} and χ2 = {(1,−1) , (−1, 1)} are not
linearly separable. Consider the application φ defined by

φ :
R2 → R6

(x1, x2)T 7→
(√

2x1,
√

2x1x2, 1,
√

2x2, x
2
1, x

2
2

)T
The data are separable in the plane (φ1, φ2)
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Non-linear preprocessing - kernels

Example of separability

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

x
1

x
2

données brutes

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

φ
1

φ
2

données après prétraitement non−linéaire

g=0

g=1

g=−1
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Non-linear preprocessing - kernels

Non-linear SVM classifier

Decision rule after preprocessing

f(x̃) = sign (gw,b(x̃)) = sign
(
wTφ (x)− b

)
= sign

( ∑
support vectors

α0
i yiφ (xi)

T φ (x)− b0
)

Cost function to optimize

U (α) = − 1
2
αTY GY Tα+

∑n
i=1 αi

where G is the Gram matrix defined by Gij = φ (xi)
T φ (xj). The cost

function U (α) has to be maximized under the constraints

0 ≤ αi ≤ 1
n
, ∀i and

∑n
i=1 αi ≥ ν

Conclusions: the cost function and the decision rule only depend on the inner
products φ (xi)

T φ (xj) and φ (xi)
T φ (x).
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Non-linear preprocessing - kernels

Kernels

A kernel k(x,y) = φ (x)T φ (y) allows inner products φ (xi)
T φ (xj) and

φ (xi)
T φ (x) to be computed with a reduced computational cost.

Example: x = (x1, x2)T and φ (x) =
(
x21, x

2
2,
√

2x1x2
)

φ (x)T φ (y) =

 x21
x22√

2x1x2

 .

 y21
y22√

2y1y2


= x21y

2
1 + x22y

2
2 + 2x1x2y1y2

=
(
xTy

)2
Mercer kernels can be expressed as inner products

k(x,y) = φ (x)T φ (y)
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Non-linear preprocessing - kernels

Classical kernels

Kernel Expression

Polynomial (of degree q)
k(x,y) = (〈x,y〉)q
q ∈ N+

Full polynomial
k(x,y) = (〈x,y〉+ c)q

c ∈ R+, q ∈ N+

RBF (Gaussian) k(x,y) = exp
(
− ‖x−y‖2

2σ2

)
σ ∈ R+

Mahalanobis
k(x,y) = exp

[
− (x− y)T Σ(x− y)

]
Σ =diag

(
1
σ2
1
, ..., 1

σ2
p

)
, σi ∈ R+
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Non-linear preprocessing - kernels

Lab example

The model (Gaussian kernel) overfits the training data in this example.
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Multi-class classification with SVM

Multi-class classification: one-versus-all

Assign x to ωi if i = arg max
k=1,...,K

gk(x)

81/ 154



Slides de cours
Support Vector Machines

Multi-class classification with SVM

Multi-class classification= one-versus-one

ω∗ = arg max
k=1,...,K

Sk(x) with Sk(x) =
∑
j 6=k

sign [gij(x̃)]

with gij the decision function between classes ωi and ωj .

In conflictual situations (same score for different classes), one can select the
class with the highest prior probability.
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Other examples

Summary

Introduction
What is classification?
Evaluating classifiers
Underfitting/Overfitting

Statistical Classification
Bayesian rule
Parametric/Non-parametric methods
Hyperparameter selection
Examples

Support Vector Machines
Introduction and motivation
Optimal separating hyperplane
Optimization problem

Non-separable case: the "soft-margin
SVM" classifier
Non-linear preprocessing - kernels
Multi-class classification with SVM
Other examples

Decision Trees
Splitting data
CART
Random Forests

Unsupervised Classification Methods
Optimization methods
Hierarchical classification
Density-based methods
Mixture models

Applications

83/ 154



Slides de cours
Support Vector Machines

Other examples

Example of linear SVMs
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File: problem1.mat, # of points K = 37
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Other examples

Example of non-linear SVMs
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Other examples

Equalization of non-linear communication channels
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Other examples

Equalization of non-linear communication channels
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Other examples

Equalization of non-linear communication channels
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Other examples

Equalization of non-linear communication channels
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Splitting data

Example of decision tree

I Construction of the tree
I Classification rule
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Splitting data

Splitting Rules

Inhomogeneity or impurity of the data

I Entropy (Algorithm C4.5)

in = −
∑

j

nj
n

log2

(nj
n

)

I Gini Index (CART)

in =
∑

j

nj
n

(
1 − nj

n

)
= 1 −

∑

j

(nj
n

)2

Drop of Impurity

∆in = in − PLiL − PRiR
where PL = nL

n
, PR = nR

n
are the proportions of the sets DL, DR.

Choose the split associated with the maximum drop of impurity!
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Splitting data

Gini Index or Entropy?

Example of 2 classes (x = n1/n)

Gini(S) = 2x(1 − x)

Entropy(S) = −x log(x) − (1 − x) log(1 − x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

xGini Entropy
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CART
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CART

Implementation by default

Algorithm CART (Matlab: ClassificationTree)

I All variables are considered for each split
I All splits are considered
I Stopping rule: pure node or number of elements less than nmin

(specified by the user)
I Splitting rule: Gini index
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CART

CART algorithm (example #1 for vectors in R2)
14 CHAPTER 8. NON-METRIC METHODS

Example 1: A simple tree classifier

Consider the following n = 16 points in two dimensions for training a binary
CART tree (B = 2) using the entropy impurity (Eq. 1).

ω1 (black) ω2 (red)
x1 x2 x1 x2

.15 .83 .10 .29

.09 .55 .08 .15

.29 .35 .23 .16

.38 .70 .70 .19

.52 .48 .62 .47

.57 .73 .91 .27

.73 .75 .65 .90

.47 .06 .75 .36* (.32†)

x1 < 0.6

x2 < 0.32

x1 < 0.35

x2 < 0.61

x1 < 0.69

x2 < 0.33

x2 < 0.09 x1 < 0.6

x1 < 0.69

x1

x2

*

†

ω1

ω2

ω2

ω2ω1 ω1

ω1 ω1

ω1ω2

ω2

1.0

.88 .65

.81 1.0

1.0

.76.59

.92

0

.2

.4

.6

.8

1

.2 .4 .6 .8 1

x1

x2

0

.2

.4

.6

.8

1

.2 .4 .6 .8 1

R1

R2

R
2

R2

R2R1 R1

R1

R1

R1

Training data and associated (unpruned) tree are shown at the top. The entropy
impurity at non-terminal nodes is shown in red and the impurity at each leaf is 0. If
the single training point marked * were instead slightly lower (marked †), the resulting
tree and decision regions would differ significantly, as shown at the bottom.
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CART

CART algorithm (example #2 for qualitative data)

Weight Size Age Result
x1 Light Small Young Pass
x2 Light Small Young Pass
x3 Light Tall Young Pass
x4 Light Tall Old Fail
x5 Light Tall Old Pass
x6 Light Tall Old Fail
x7 Heavy Small Old Fail
x8 Heavy Small Young Fail
x9 Light Small Old Pass
x10 Heavy Tall Old Pass

I First branch (Gini Index)
I Weight ⇒ 2(1/7 + 1/15) ∼ 0.42
I Size ⇒ 12/25 ∼ 0.48
I Age ⇒ 2(3/40 + 3/20) ∼ 0.45
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CART

Lab example
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Random Forests

Random Forests

Matlab: TreeBagger (options by default)
I Resampling all the data in the training set by bootstrap (and not a subset)
I Number of variables to select at random for each decision split:

√
nvar
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Random Forests

Lab example: number of trees (fraction of data per tree: 70%)

1 tree 5 trees
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Random Forests

Lab example: number of trees (fraction of data per tree: 70%)

10 trees 100 trees
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Random Forests

Lab example: influence of the fraction of data per tree

10% 30%
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Random Forests

Lab example: influence of the fraction of data per tree

50% 70%
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Random Forests

Out-of-bag error

Matlab example

105/ 154



Slides de cours
Decision Trees

Random Forests

Comparison between CART and Random Forests

Book by G. James, D. Witten, T. Hastie and R. Tibshirani
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Random Forests

Importance of the different variables

Mean decrease in Gini index
Average of decreases of the Gini index when the attribute has been used for
splitting
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Random Forests

References
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Optimization methods

Unsupervised learning

N unlabelled data vectors of Rp denoted as X = {x1, ...,xN} which should be
split into K classes ω1, ..., ωK .

Motivations
I Supervised learning is costly
I The classes can change with time
I Provide some information about the data structure

Optimal solution
Number of partitions of X in K subsets

P (N,K) =
1

K!

K∑
k=0

kN (−1)K−k CkK K < N

Example: P (100, 5) ≈ 1068 !
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Optimization methods

Partition with minimum mean square error

Mean square error of a partition
Mean square error (MSE) of the class ωi and of the partition X

E2
i =

Ni∑
k=1

d2 (xk, gi) , E2 =
K∑
i=1

E2
i

where gi = 1
Ni

∑Ni
k=1 xk is the centroid of the class ωi

Properties
Ni∑
k=1

d2 (xk,y) =

Ni∑
k=1

d2 (xk, gi) +Nid
2 (gi,y)

In particular, for y = g (data centroid), we obtain
K∑
i=1

Ni∑
k=1

d2 (xk, g) =

K∑
i=1

Ni∑
k=1

d2 (xk, gi)︸ ︷︷ ︸
E2

+
K∑
i=1

Nid
2 (gi, g)

MSE of X = within-class MSE + between-class MSE
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Optimization methods

K-means Algorithm (ISODATA)

Search a partition of X ensuring a local minimum of E2

1. Initial choice of the number of classes and the class centroids

2. Assign each vector xi to ωj (using the centroid distance rule) such that

d (xi, gj) = inf
k
d (xi, gk)

3. Compute the centroids g∗k of the new classes ω∗k
4. Repeat steps 2) and 3) until convergence

I Improved version of ISODATA
I Two classes are merged if their centroids are close
I A class is split if it contains too many vectors xi or if its mean square error

is too large

I Convergence: see notes or textbooks
I Example: https://tmalon.github.io/k-means/
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Optimization methods

15K-means
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Optimization methods

17K-means
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Optimization methods

18K-means

115/ 154



Slides de cours
Unsupervised Classification Methods

Optimization methods

19K-means
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Optimization methods

20K-means
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Optimization methods

21K-means
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Optimization methods

22K-means
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Optimization methods

23K-means
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Optimization methods

24K-means
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Optimization methods

Initialization Problems

Thanks to Jing Gao from SUNY Buffalo university for her slides!!
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Optimization methods

Initialization Problems
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Optimization methods
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Hierarchical classification
Ascending hierarchy: method of distances

I Distance Min (single linkage algorithm)

d(Xi, Xj) = min d(x,y) x ∈ Xi,y ∈ Xj
This distance favors elongated classes

I Distance Max (complete linkage algorithm)

d(Xi, Xj) = max d(x,y) x ∈ Xi,y ∈ Xj
I Average linkage algorithm

d(Xi, Xj) =
1

NiNj

∑
x∈Xi,y∈Xj

d(x,y)

I Distance between the means

d(Xi, Xj) = d (gi, gj)

where Xi and Xj have cardinals Ni and Nj and centroids gi and gj .

Representation using a tree whose nodes indicate the different groups
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Hierarchical classification

Classification of Modulations
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Hierarchical classification

Classification of Modulations
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Density-based clustering methods

Definitions
I Neighborhood of a point p ∈X

Nε(p) = {q ∈X|d(p, q) ≤ ε}

I Core point: a point p is a core point if it has more than MinPts neighbors
in Nε(p).

I Border point: a point p is a border point if it has less than MinPts
neighbors in Nε(p) and if it is in the neighborhood of a core point

I Noise point: a noise point is a point that is not a core point nor a border
point
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Core, border and noise points

Thanks to Jing Gao from SUNY Buffalo university for her slides!!
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Relationships between different points

Directly density-reachable points
A point q is directly reachable from p for (ε,MinPts) if

I q ∈ Nε(p)
I p is a core point, i.e., Nε(p) contains more than MinPts points.

Example

I q is directly density-reachable from p

I p is not directly density-reachable from q
(q is not a core point)

It is an asymmetric relationship!
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Relationships between different points

Density-reachable points
A point q is density-reachable from p for (ε,MinPts) if there is chain of points
pi such that

I p1 = p and pN = q

I each point pi+1 is directly density-reachable from pi.

Example

I q is directly density-reachable from p

I p is not directly density-reachable from q
(q is not a core point)

It is an asymmetric relationship!
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Relationships between different points

Density-connectivity
Points p and q are density-connected for (ε,MinPts) if there is an object r
such that both p and q are density reachable from r.

Example

It is a symmetric relationship!

136/ 154



Slides de cours
Unsupervised Classification Methods

Density-based methods

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Cluster definition
A cluster C is defined as a maximal set of density-connected points

I Maximality: if p ∈ C and if q is density-reachable from p, then q ∈ C.
I Connectivity: for all (p, q) ∈ C, p and q are density-connected.

Example
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DBSCAN

A simple algorithm
I Select a point p
I Determine all density-reachable points from p for (ε,MinPts).
I If p is a core point, i.e., if the cardinal of Nε(p) is larger than MinPts, a

cluster is formed
I If p is a border point, DBSCAN visits the next point
I Continue the procedure until all points have been visited

The DBSCAN algorithm generally provides a result independent of the order
the points have been processed.
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How can we choose ε and MinPts?

Thanks to Jing Gao from SUNY Buffalo university for her slides!!
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How can we choose ε and MinPts?

Some ideas
I Points belonging to a cluster have a distance to their k-nearest neighbor

(denoted as k-dist) smaller than noise points
I Compute all the k-dist values and sort them in increasing order
I Choose ε as the value of k-dist associated with a sharp change in the

curve (this value does not vary significantly with the value of k)

Example
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Conclusions

Pros
I Clusters of arbitrary shapes
I Robustness to noise

Cons
I Problems with clusters of different densities
I Parameter determination can be difficult

Some references (related to DBSCAN)

I M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proc. Int. Conf.
Knowledge Discovery and Data Mining (KDD’96), Portland, Oregon, Aug. 1996.

I J. Gao, Slides on Data Mining and Bioinformatics, University at Buffalo,
https://www.cse.buffalo.edu/ jing/cse601/fa13/.
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Gaussian mixture (unsupervised learning)
Idea: N unlabelled data vectors of Rp denoted as X = {x1, ...,xn} emerge
from K Gaussian components/classes denoted as ω1, . . . , ωK .

Gaussian mixture model (GMM)
I Definition

p(x|θ) =

K∑
k=1

πkp(x|µk,Σk) (3)

I θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) contains all the parameters of
the mixture model.

Example: K = 3 seems reasonable (θ is unknown)
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Gaussian mixture (supervised learning)
When the N data X = {x1, ...,xn} are complete (i.e. labelled, assigned to
classes), the parameter estimation problem is straightforward (each Gaussian
can be estimated separately). Besides the data, we also have their labels:
{(x1, y1), ..., (xn, yn)} where yi ∈ {ω1, . . . , ωK}.

Gaussian mixture model (GMM)
I Definition

p(x|θ) =

K∑
k=1

πkp(x|µk,Σk) (4)

I Assignments: binary variable δ(k|i) assigns data xi to the kth Gaussian
(class ωk) if δ(k|i) = 1 (δ(k|i) = 0 otherwise).

Example: K = 3 is now given (along with data assignments).
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Gaussian mixture (supervised learning)
When the N data X = {x1, ...,xN} are complete (i.e., labelled or assigned to
classes), the parameter estimation problem is straightforward (each Gaussian
density can be estimated separately).

Estimation of the Gaussian mixture model

I π̂j ← n̂j

n
with n̂j =

∑n
i=1 δ(j|i)

I µ̂j ← 1
n̂j

∑n
i=1 δ(j|i)xi

I Σ̂j ← 1
n̂j

∑n
i=1 δ(j|i)(xi − µ̂j)(xi − µ̂j)T

where δ(j|i) = 1 assigns data xi to the jth Gaussian density

Example: K = 3 is now given (along with data assignments).
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Gaussian mixture (back to unsupervised case)

Without assignment (unsupervised learning), we start from an initial setting of
the parameters θ : θ0 = (π0

1 , . . . , π
0
K ,µ

0
1,Σ

0
1, . . . ,µ

0
K ,Σ

0
K) and compute

P (yi = ωj |xi,θ0) =
p(xi|yi = ωj ,θ

0)P (ωj)∑K
k=1 p(xi|yi = ωk,θ0)P (ωk)

(5)

P (yi = ωj |xi,θ0) =
π0
j p(xi|µ0

j ,Σ
0
j )∑K

k=1 π
0
kp(xi|µ0

k,Σ
0
k)

(6)

Soft assignment

I δ̂(j|i) = P (yi = ωj |xi,θ0)

I
∑K
j=1 δ̂(j|i) = 1.
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Expectation-Maximization (EM-Algorithm for GMM estimation)
Without assignment (unsupervised case), we start from θ0 and iterate
soft-assignments that “complete the incomplete data” (Expectation-step) and
parameter refinement (Maximisation-step). We can show that the new setting
of the parameters θ(k+1) increases the log-likelihood of the “completed” data.

EM-algorithm:

1. Initialization Specify θ(k=0).

2. Repeat
(E-step) soft-assignments of xi ∀i

δ̂(j|i)← P (yi = ωj |xi,θ
(k)) (7)

(M-step) Refine θ(k+1):

I π̂j ←
n̂j

n
with n̂j =

∑n
i=1 δ̂(j|i)

I µ̂j ← 1
n̂j

∑n
i=1 δ̂(j|i)xi

I Σ̂j ← 1
n̂j

∑n
i=1 δ̂(j|i)(xi − µ̂j)(xi − µ̂j)

T

I k ← k + 1
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EM-Algorithm for GMM estimation (demo from book by Bishop∗)

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(Initialisation) (E)

∗ Christopher Bishop, Pattern Recognition and Machine Learning. New-York:
Springer Verlag, 2006.
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EM-Algorithm for GMM estimation (demo 2/3)

(c)

�����

−2 0 2

−2

0

2

(d)

�����

−2 0 2

−2

0

2

(M) (Iteration k = 2)
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EM-Algorithm for GMM estimation (demo 3/3)

(e)

�����

−2 0 2

−2

0

2

(f)

�������

−2 0 2

−2

0

2

(Iteration k = 5) (Iteration k = 20)

Convergence
I The EM algorithm monotonically increases the log-likelihood of the data.
I We have l(θ0) < l(θ1) < ... < l(θk) with l(θk) =

∑n
i=1 ln p(xi|θk)
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Mélange de lois gaussiennes généralisées asymétriques (AGGD)
Estimation des paramètres du mélange

Sélection de modèle
Conclusions et perspectives

Mélange de lois AGGD

Vraisemblance du mélange

p(x |q) =
M

Â
j=1

pjp(x |qj)

avec

p(x |qj) =

8
>>><
>>>:

d
1/lj
j

g
1/lj
j �(1+1/lj )

exp
⇣
� dj

gj

⇣
µj�x

aj

⌘lj
⌘

si x < µj

d
1/lj
j

g
1/lj
j �(1+1/lj )

exp
⇣
� dj

gj

⇣
x�µj

1�aj

⌘lj
⌘

si x � µj

aj : paramètre d’asymétrie

µj : paramètre de décalage

gj : paramètre d’échelle

lj : paramètre de forme

dj =
2a

lj
j (1�aj )

lj

aj
lj +(1�aj )

lj

M : nombre de composantes
5 / 78
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Mélange de lois gaussiennes généralisées asymétriques (AGGD)
Estimation des paramètres du mélange

Sélection de modèle
Conclusions et perspectives

Algorithme EMB + Minimum message length
Fusion de modes proches

Algorithme 2

Figure – Estimation des paramètres sur une fenêtre 300⇥300 pixels

19 / 78
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Examples of Applications

Bayes classifier
I Document classification
I Detection of SPAMS in emails

SVM
I Face detection
I Object detection and recognition

Neural networks
I Image recognition
I Natural language processing
I Object detection and recognition

CART and Random Forests
I Medical applications
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