Analyse de Données Slides 1ère année Sciences du Numérique

Jean-Yves Tourneret⁽¹⁾ et Axel Carlier⁽¹⁾

(1) Université de Toulouse, ENSEEIHT-IRIT jyt@n7.fr, http://perso.tesa.prd.fr/jyt/, axel.carlier@toulouse-inp.fr

Octobre 2023

References

- R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd edition, Wiley, 2000.
- S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th edition, Academic Press, 2008.
- A. Jain, R. Duin and J. Mao, Statistical Pattern Recognition: A Review, IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, Jan. 2000.

- Introduction

What is classification?

Summary

Introduction What is classification?

Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests nsupervised Classification Optimization methods Hierarchical classification

Density-based methods

Mixture models

Applications

What is classification?

Classification Applications

ChatGPT				
;ò; Examples	4 Capabilities	△ Limitations		
"Explain quantum computing in simple terms"	Remembers what user said earlier in the conversation	May occasionally generate incorrect information		
"Got any creative ideas for a 10 year old's birthday?" →	Allows user to provide follow-up corrections	May occasionally produce harmful instructions or biased content.		
"How do I make an HTTP request in Javascript?"	Trained to decline inappropriate requests	Limited knowledge of world and events after 2021		

Machine Learning

Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Samuel (1959)

A computer program is said to learn from experience E, with respect to a task T and a performance measure P, if its performance P on task T improves with experience E.

Tom Mitchell (1998)

Slides de cour	s
- Introductio	n
└─ What is	classification?

2 main types of learning

Supervised learning

> An oracle (expert) provides a training set (data, labels) :

$$\mathcal{D} = \{(\pmb{x}^{(1)}, y^{(1)}), ..., (\pmb{x}^{(m)}, y^{(m)})\}$$

- ► A model (predictor) is trained to minimize the difference between ground truth and predicted labels.
- Often costly because it requires large databases to be annotated by humans.

Slides de co	ur	S
- Introduct	tio	n
What	is	classification?

2 types of learning

In **unsupervised learning**, information should be inferred from data only (no labels) :

$$\mathcal{D} = \{ \boldsymbol{x}^{(1)}, ..., \boldsymbol{x}^{(m)} \}.$$

Feature extraction

Density estimation

Supervised learning

The **supervised learning** framework assumes we have observations (or data) and labels (or targets) which constitute a training set, that we denote :

$$\mathcal{D} = \{(\boldsymbol{x}^{(1)}, y^{(1)}), ..., (\boldsymbol{x}^{(m)}, y^{(m)})\}.$$

The model is trained to reproduce the correspondences between observations and labels.

$$x \longrightarrow$$
 black box $\longrightarrow \hat{y}$
The "black-box" model

Slides de co	ur	5
- Introduc	tio	n
What	is	classification?

Example : Classification of Altimetric Signals

Introduction

What is classification?

Classification pipeline

- Introduction

What is classification?

Classification pipeline: lab example

Introduction

Evaluating classifiers

Summary

Introduction

Evaluating classifiers

Evaluating classifiers

In this example, y and $\hat{y} \in \{\text{benign, malignant}\}\$ y is called the ground truth associated with x, while \hat{y} is the classifier prediction.

How to assess the quality of a classifier? What makes a good classifier?

Accuracy

Accuracy: The accuracy measures the overall correctness of the classifier.

$$Accuracy = \frac{\text{Number of Correctly Classified Instances}}{\text{Total Number of Instances}}$$

Example:

Let's consider a binary classification task with 100 instances. The classifier correctly classifies 85 instances. The accuracy is:

$$Accuracy = \frac{85}{100} = 0.85$$
 (or 85%)

Confusion Matrix

The confusion matrix provides a detailed view of a classifier's performance.

Example:

Consider a binary classification task with 100 instances. The confusion matrix for a classifier is as follows:

	Predicted Negative	Predicted Positive
Actual Negative	60	10
Actual Positive	5	25

The confusion matrix reveals:

- ▶ 60 True Negatives and 25 True Positives
- ▶ False Positives (in statistics, false alarms): 10
- ► False Negatives (in statistics, non detections): 5

In our lab example, this means the classifier tends to raise false alarms (i.e. to predict cancer) more often than to miss actual cancers.

Precision, Recall, and F1-score

Precision, recall, and F1-score evaluate the performance of a classifier in terms of positive predictions.

Precision quantifies the proportion of correctly predicted positive instances out of all instances predicted as positive.

$$Precision = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}}$$

Recall calculates the ratio of correctly predicted positive instances to the actual number of positive instances.

$$Recall = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

F1-score combines precision and recall into a single metric by calculating their harmonic mean.

$$F1\text{-}score = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Precision, Recall, and F1-score

Example:

Consider a binary classification task with 100 instances. The confusion matrix for a classifier is as follows:

	Predicted Negative	Predicted Positive
Actual Negative	60	10
Actual Positive	5	25

$$Precision = \frac{25}{25+10} \approx 0.71$$

$$Recall = \frac{25}{25+5} \approx 0.83$$

$$F1\text{-}score = 2 \times \frac{0.71 \times 0.83}{0.71 + 0.83} = 0.76$$

- Introduction

Underfitting/Overfitting

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests nsupervised Classification Optimization methods Hierarchical classificatic

Density-based methods

Mixture models

Applications

Empirical risk and Expected risk

Empirical risk: average prediction error on the training set.

Expected risk (or generalization risk) : average prediction error on the target population... **Unknown** !

The training objective of any machine learning algorithm is to minimize the **Empirical Risk**, but in fact what we are really interested in is to minimize the **Expected Risk**.

Under/Overfitting

We speak of **underfitting** when the learned model explains the training set too poorly. *Empirical risk is high*.

We speak of **overfitting** when the learned model explains the training set too well; this model then badly generalizes to the target population. *Empirical risk is low, but expected risk is high!*

Under/Overfitting : model capacity

Models with low capacity compared to the task complexity will tend to underfit, while models with large capacity will tend to overfit. - Introduction

Underfitting/Overfitting

Detecting Under/Overfitting

Cross Validation is a way to jointly evaluate empirical risk and expected risk when the size of the dataset is limited.

In the case we have a sufficient number of data samples, we can split the dataset into two parts for learning and testing.

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule

Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests nsupervised Classification M Optimization methods Hierarchical classification Density-based methods

Mixture models

Applications

Classification

Notations

• K classes
$$\omega_1, ..., \omega_K$$

- $\boldsymbol{x} = \left[x\left(1
 ight), ..., x\left(p
 ight)
 ight]^{T}$ measurements $\in X = \mathbb{R}^{p}$
- ► A: set of possible actions $a_1, ..., a_q$ where a_k = "assign the vector x to the class ω_k ", $\forall k = 1, ..., K$

Definition

$$d: \begin{array}{cc} X \to A \\ \boldsymbol{x} \mapsto d(\boldsymbol{x}) \end{array}$$

Remark

Classification with reject option: $A = \{a_0, a_1, ..., a_K\}$ where $a_0 =$ "do not classify the vector \boldsymbol{x} "

Bayesian Rule

Hypothesis: Probabilistic Model

• A priori probability of class ω_k

 $P\left(\omega_k\right)$

 \blacktriangleright Probability density function of the observation vector x conditionally to class ω_k

 $f(\boldsymbol{x}|\omega_k)$

Conclusion

• A posteriori probability that x belongs to class ω_k

$$P(\omega_{k} | \boldsymbol{x}) = \frac{f(\boldsymbol{x} | \omega_{k}) P(\omega_{k})}{f(\boldsymbol{x})}$$

with $f(\boldsymbol{x}) = \sum_{k=1}^{K} f(\boldsymbol{x} | \omega_k) P(\omega_k)$.

Statistical Classification

Bayesian rule

Example

MAP Classifier

Definition

$$d^{*}(\boldsymbol{x}) = a_{j} \Leftrightarrow P(\omega_{j} | \boldsymbol{x}) \ge P(\omega_{k} | \boldsymbol{x}), \forall k \in \{1, ..., K\}$$

Equiprobable Classes: Maximum Likelihood Classifier

$$d^{*}\left(\boldsymbol{x}\right) = a_{j} \Leftrightarrow f\left(\boldsymbol{x} \mid \omega_{j}\right) \geq f\left(\boldsymbol{x} \mid \omega_{k}\right), \forall k \in \{1, ..., K\}$$

Property

The MAP classifier minimizes the probability of error

Proof (2 classes)

$$P_{e} = P[d(\boldsymbol{x}) = a_{1} \cap \boldsymbol{x} \in \omega_{2}] + P[d(\boldsymbol{x}) = a_{2} \cap \boldsymbol{x} \in \omega_{1}]$$

$$= P[d(\boldsymbol{x}) = a_{1} | \boldsymbol{x} \in \omega_{2}] P(\omega_{2}) + P[d(\boldsymbol{x}) = a_{2} | \boldsymbol{x} \in \omega_{1}] P(\omega_{1})$$

Let $R_i = \{ m{x} \in \mathbb{R}^p / d(m{x}) = a_i \}$ be the acceptance region for class ω_i

$$P_{e} = \int_{R_{1}} P(\omega_{2}) f(\boldsymbol{x} | \omega_{2}) d\boldsymbol{x} + \int_{R_{2}} P(\omega_{1}) f(\boldsymbol{x} | \omega_{1}) d\boldsymbol{x}$$

$$= P(\omega_{2}) \left[1 - \int_{R_{2}} f(\boldsymbol{x} | \omega_{2}) d\boldsymbol{x} \right] + \int_{R_{2}} P(\omega_{1}) f(\boldsymbol{x} | \omega_{1}) d\boldsymbol{x}$$

$$= P(\omega_{2}) + \int_{R_{2}} \left[P(\omega_{1}) f(\boldsymbol{x} | \omega_{1}) - P(\omega_{2}) f(\boldsymbol{x} | \omega_{2}) \right] d\boldsymbol{x}$$

$$= P(\omega_{2}) - \int_{R_{2}} \left[P(\omega_{2} | \boldsymbol{x}) - P(\omega_{1} | \boldsymbol{x}) \right] f(\boldsymbol{x}) d\boldsymbol{x}$$

 P_{e} is minimum when $R_{2} = \{ \boldsymbol{x} / P\left(\omega_{2} \left| \boldsymbol{x} \right.) > P\left(\omega_{1} \left| \boldsymbol{x} \right.) \}$

Probability of Error (K classes)

Definition

$$P_{e} = \sum_{k=1}^{K} P\left[d\left(\boldsymbol{x}\right) = a_{k} \cap \boldsymbol{x} \notin \omega_{k}\right]$$

Property (admitted)

The MAP classifier minimizes the probability of error

Gaussian Case

Densities

$$f(\boldsymbol{x} | \omega_k) = \frac{1}{(2\pi)^{p/2} \sqrt{\det \Sigma_k}} \exp \left[-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{m}_k \right)^T \boldsymbol{\Sigma}_k^{-1} \left(\boldsymbol{x} - \boldsymbol{m}_k \right) \right]$$

General Case

$$d^{*}(\boldsymbol{x}) = a_{i} \Leftrightarrow g_{i}(\boldsymbol{x}) \ge g_{k}(\boldsymbol{x}) \qquad \forall k = 1, ..., K$$

with

$$g_i(\boldsymbol{x}) = -(\boldsymbol{x} - \boldsymbol{m}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{m}_i) - \ln \det \boldsymbol{\Sigma}_i + 2 \ln P(\omega_i)$$

Gaussian Case

Classifier

Slides de cours - Statistical Classification - Bayesian rule

Identical covariance matrices ($\Sigma_i = \Sigma$)

Equiprobable classes - Centroid Distance Rule

 $d^{*}(\boldsymbol{x}) = a_{i} \Leftrightarrow d_{M}(\boldsymbol{x}, \boldsymbol{m}_{i}) \leq d_{M}(\boldsymbol{x}, \boldsymbol{m}_{k}) \qquad \forall k = 1, ..., K$

where d_M is the Mahalanobis distance

$$d_M(\boldsymbol{x}, \boldsymbol{m}_k) = \sqrt{(\boldsymbol{x} - \boldsymbol{m}_k)^T \, \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{x} - \boldsymbol{m}_k
ight)}$$

Non equiprobable classes: affine discriminant functions

$$d^{*}\left(\boldsymbol{x}\right) = a_{i} \Leftrightarrow \left[\boldsymbol{x} - \frac{1}{2}\left(\boldsymbol{m}_{i} + \boldsymbol{m}_{k}\right)\right]^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{m}_{i} - \boldsymbol{m}_{k}\right) \ge \ln \frac{P(\omega_{k})}{P(\omega_{i})}, \ \forall k$$

Exemple

Exemple 1

En communications numériques, on veut transmettre un symbole x binaire défini par :

```
Classe 1: x = 0
Classe 2: x = 1
```

Le symbole émis x passe par un canal de transmission, où il est perturbé par un bruit n supposé Gaussien centré de variance σ^2 . Le signal reçu est alors z = x + n. Le problème est de retrouver le symbole émis à partir du signal reçu.

1) Énoncez la règle de décision Bayésienne lorsque les deux valeurs 0 et 1 ont la même probabilité d'apparition.

2) Calculer la probabilité d'erreur correspondante que l'on exprimera à l'aide de la fonction de répartition de la loi normale $\mathcal{N}(0,1)$ définie par

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du.$$

Montrer que cette probabilité d'erreur tend vers 0 lorsque σ tend vers 0 et commenter.

3) Comment la règle de décision Bayésienne est modifiée si les deux valeurs x = 0 et x = 1 ont des probabilités d'apparition notées P_0 et P_1 ? Interpréter ce résultat lorsque $P_0 > P_1$.

4) On envoie N fois le même symbole x et on reçoit $z_i = x + n_i$. En supposant que les variables aléatoires $n_1, ..., n_N$ sont indépendantes, quelle est la règle de décision Bayésienne dans le cas de deux symboles équiprobables ?

Exemple 2

Généralisation à 4 symboles $\boldsymbol{x} \in \{(0,0), (0,1), (1,0), (1,1)\}$

Slides de cours

Statistical Classification

Parametric/Non-parametric methods

Summary

Statistical Classification

Parametric/Non-parametric methods

- Statistical Classification

Parametric/Non-parametric methods

Parametric methods

Principle

Assume that the distribution of $\boldsymbol{x} = (x_1, ..., x_n)^T$ is characterized by a parametric probability density function, which depends on an unknown parameter vector $\boldsymbol{\theta} \in \mathbb{R}^p$ and estimate this parameter vector using a method considered in statistics

- Maximum likelihood method
- Method of moments
- MMSE or MAP estimators

- Statistical Classification

Parametric/Non-parametric methods

Contexte de l'étude

Les passes à poissons

à bassins successifs

à ralentisseurs

ascenseur
Parametric/Non-parametric methods

enregistrées par un opérateur humain

Parametric/Non-parametric methods

Acquisition des images Nouvelles conditions d'acquisition

Image

Histogramme : bimodal

Parametric/Non-parametric methods

Parametric/Non-parametric methods

Mesure d'efficacité de la règle de classement

Résultats obtenus sur la BDT

% de reconnaissance dynamiques sur la base de données test (comparaison des règles de décision quadratique et linéaire)

- Statistical Classification

Parametric/Non-parametric methods

Lab example

We choose to model the distributions of each class with a Gaussian model.

Parametric/Non-parametric methods

Lab example

Classe "-1" : melanomes

Classe "1" : fibromes

Parametric/Non-parametric methods

Lab example

Superposition des deux classes

- Statistical Classification

Parametric/Non-parametric methods

Lab example

In this example, the model is too simple and seems to underfit. However the results on the test set are satisfying.

Parametric/Non-parametric methods

A non-parametric method: the k-nearest neighbor rule

the nearest neighbor rule

 $d(x) = a_j$ if the nearest neighbor of x belongs to ω_j

The observed vector x is affected to the class of its nearest neighbor.

Inequality of Cover and Hart

$$P^* \le P_1 \le P^* \left(2 - \frac{K}{K-1}P^*\right)$$

The k-nearest neighbor rule

 \boldsymbol{x} is assigned to the class most common amongst its k-nearest neighbors (with a given distance measure)

Parametric/Non-parametric methods

Probability of error

Inequalities

$$P^* \le P_k \le P^* + \frac{1}{\sqrt{ke}} \text{ or } P^* \le P_k \le P^* + \sqrt{\frac{2P_1}{k}}$$

Approximations

When P^* is small, the following results can be obtained

$$P_1 \approx 2P^*$$
 and $P_3 \approx P^* + 3(P^*)^2$

-Statistical Classification

Parametric/Non-parametric methods

Lab example

- A smaller K tends to perfectly reproduce the training data but generalizes poorly (overfitting)
- ▶ A larger K tends to regularize the decision boundary, which helps generalization.

Hyperparameter selection

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods **Hyperparameter selection** Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests Unsupervised Classification Met Optimization methods Hierarchical classification Density-based methods Mixture models

Applications

Comparing and selecting classifiers.

- ▶ We just saw how a "k-nearest-neighbors" (knn) classifier works and the rationale behind such a non-parametric method.
- ▶ How should we select k? is a remaining question.

S-fold cross-validation

- S-fold cross-validation involves taking the available data and partitioning it into S groups. Then S − 1 of the groups are used to train a set of models that are then evaluated/tested on the remaining group (termed ζ in the sequel).
- This procedure is then repeated for all S possible choices for the held-out group, indicated here by the red blocks, and the performance scores from the S runs are then averaged.

Hyperparameter selection

S-fold Cross-Validation

4-fold cross-validation

CV score for each k and $\zeta(j)$ is the $j{\rm th}$ group used as testing data

$$CV(\mathbf{k}) = \frac{1}{S} \sum_{\mathrm{run } j=1}^{S} \frac{1}{|\zeta(j)|} \sum_{(\mathbf{x}', y') \in \zeta(j)} c(f_{\mathbf{k}\mathrm{nn}}^{D-\zeta(j)}(\mathbf{x}'), y')$$

Leave-One-Out (LOO) score for each \boldsymbol{k}

$$CV(\mathbf{k}) = \frac{1}{n} \sum_{i=1}^{n} c(f_{\mathbf{k}nn}^{D-\{(\mathbf{x}_i, y_i)\}}(\mathbf{x}_i), y_i)$$

Summary

Statistical Classification

Examples

Example

Some classification results

Bayesian Classification (Gaussian densities)

Classes	Ocean	Desert	Forest	Ice
Ocean	99.6	0.0	0.0	0.0
Desert	0.0	95.3	1.8	0.0
Forest	0.0	4.4	97.7	0.8
Ice	0.4	0.4	0.5	99.2

 $1\text{-}\mathsf{PPV}$ Method

Classes	Ocean	Desert	Forest	Ice
Ocean	100	0.0	0.0	0.0
Desert	0.0	96.0	5.4	0.0
Forest	0.0	4.0	93.2	0.0
Ice	0.0	0.0	1.4	100

Some classification results

$5\text{-}\mathsf{PPV}$ Method

Classes	Ocean	Desert	Forest	Ice
Ocean	100	0.0	0.0	0.0
Desert	0.0	93.8	5.9	0.3
Forest	0.0	6.2	93.2	0.0
Ice	0.0	0.0	0.9	99.7

Neural Networks

Classes	Ocean	Desert	Forest	Ice
Ocean	100	0.0	0.0	0.0
Desert	0.0	96.0	5.4	0.0
Forest	0.0	4.0	92.8	0.8
Ice	0.0	0.0	1.8	99.2

-Support Vector Machines

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines Introduction and motivation

Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests Insupervised Classification Optimization methods Hierarchical classification Density-based methods

Mixture models

Applications

Support vector machines (SVMs)

Learning set

 $\mathcal{B} = \left\{ \left(oldsymbol{x}_1, y_1
ight), ..., \left(oldsymbol{x}_n, y_n
ight)
ight\}$

where $x_1, ..., x_n$ are *n* vectors of \mathbb{R}^p and $y_1, ..., y_n$ are binary variables

 $y_i = 1$ if $\boldsymbol{x}_i \in \omega_1, \quad y_i = -1$ if $\boldsymbol{x}_i \in \omega_2$

Hyperplane definition

$$g_{\boldsymbol{w},b}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} - b = 0$$

with

$$g_{oldsymbol{w},b}(oldsymbol{x}_i) > 0 ext{ if } oldsymbol{x}_i \in \omega_1, \quad g_{oldsymbol{w},b}(oldsymbol{x}_i) < 0 ext{ if } oldsymbol{x}_i \in \omega_2$$

Classification rule

$$f(\boldsymbol{x}) = \operatorname{sign} \left[g_{\boldsymbol{w},b}(\boldsymbol{x})\right] \tag{1}$$

└─ Support Vector Machines └─ Introduction and motivation

Illustration

-Support Vector Machines

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem

Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples ecision Trees Splitting data CART

Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods Mixture models

Applications

Problem formulation

Margin of x_i with label y_i (algebraic distance to the hyperplane)

$$\gamma_{i}\left(\widetilde{\boldsymbol{w}}
ight)=rac{y_{i}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i}-b
ight)}{\left\|\boldsymbol{w}
ight\|}$$

with $\widetilde{w} = (w, b)$ (x_i is correctly classified by (1) if $\gamma_i(\widetilde{w}) > 0$) Margin of the learning set

$$\gamma_{\mathcal{B}}\left(\widetilde{\boldsymbol{w}}\right) = \min_{i \in \{1,...,n\}} \frac{y_i\left(\boldsymbol{w}^T \boldsymbol{x}_i - b\right)}{\|\boldsymbol{w}\|}$$

Since $\gamma_{\mathcal{B}}\left(a\widetilde{\boldsymbol{w}}\right) = \gamma_{\mathcal{B}}\left(\widetilde{\boldsymbol{w}}\right)$, $\forall a > 0$, $\widetilde{\boldsymbol{w}}$ is not unique!

Constraints for the hyperplane: one forces the training samples that are the closest to the hyperplane to satisfy

$$y_i\left(\boldsymbol{w}^T\boldsymbol{x}_i - b\right) = 1 \Rightarrow \min_{i \in \{1,...,n\}} y_i\left(\boldsymbol{w}^T\boldsymbol{x}_i - b\right) = 1$$

The vectors x_i satisfying $y_i (w^T x_i - b) = 1$ are called support vectors.

Problem formulation

Canonical hyperplane

$$y_i\left(\boldsymbol{w}^T\boldsymbol{x}_i-b\right) \geq 1, \quad \forall i=1,...,n$$

Classifier margin for a canonical hyperplane

$$\gamma_{\mathcal{B}}\left(\widetilde{\boldsymbol{w}}\right) = \frac{1}{\|\boldsymbol{w}\|}$$

We want to maximize the margin, i.e. minimize ||w||, which leads to the **Primal formulation**

$$\begin{cases} \min_{\boldsymbol{w} \in \mathbb{R}^{n}, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\boldsymbol{w}\|^{2} \right\} \\ \text{s.c.} \quad y_{i} \left(\boldsymbol{w}^{T} \boldsymbol{x}_{i} - b \right) \geq 1, \forall i \in \{1, \dots, n\} \end{cases}$$

Simple problem since the cost function to optimize is quadratic and the constraints are linear!

-Support Vector Machines

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples ecision Trees Splitting data

CART Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods Mixture models

Applications

Optimization

Lagrangian

$$L\left(\widetilde{\boldsymbol{w}},\alpha\right) = \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} - \sum_{i=1}^{n} \alpha_{i} \left[y_{i}\left(\boldsymbol{w}^{T}\boldsymbol{x}_{i} - b\right) - 1\right]$$

Set to zero the partial derivatives of L with respect to b and w

$$\sum_{i=1}^n lpha_i y_i = 0$$
 and $oldsymbol{w} = \sum_{i=1}^n lpha_i y_i oldsymbol{x}_i$

Kuhn and Tucker multipliers

For a convex optimization problem (convex function f(x) to optimize and convex constraints $G_i(x) \leq 0$), an optimality condition is the existence of parameters $\alpha_i \geq 0$ such that the Lagrangian derivative is zero, i.e.,

$$L'(\boldsymbol{x}) = f'(\boldsymbol{x}) + \sum_{i=1}^{n} \alpha_i G'_i(\boldsymbol{x}) = 0$$

with $\alpha_i = 0$ if $G_i(\boldsymbol{x}) < 0$ (i.e., $\alpha_i G_i(\boldsymbol{x}) = 0$).

Dual problem

Solve $L'(\boldsymbol{x}) = 0$ $\boldsymbol{w} = \sum_{\text{Support vectors}} \alpha_i y_i \boldsymbol{x}_i = \boldsymbol{x}^T \boldsymbol{Y} \boldsymbol{\alpha}$ with $\boldsymbol{\alpha} = (\alpha_1, ..., \alpha_n)^T$, $\boldsymbol{x} = (x_1, ..., x_n)^T$, $\boldsymbol{Y} = \text{diag}(y_1, ..., y_n)$ and $\begin{cases} \alpha_i = 0 \text{ if the constraint is a strict inequality} \\ \alpha_i > 0 \text{ if the constraint is an equality} \end{cases}$

After replacing the expression of w in the Lagrangian, we obtain

$$U(\alpha) = -\frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{Y} \left(\boldsymbol{x} \boldsymbol{x}^{T} \right) \boldsymbol{Y} \boldsymbol{\alpha} + \sum_{i=1}^{n} \alpha_{i}$$

that has to be maximized in the domain defined by $\alpha_i \geq 0, \forall i$ and $\sum_{i=1}^n \alpha_i y_i = 0.$

(2)

Dual problem

Dual formulation

$$\begin{cases} \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \left\{ -\frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{Y} \left(\boldsymbol{x} \boldsymbol{x}^T \right) \boldsymbol{Y} \boldsymbol{\alpha} + \sum_{i=1}^n \alpha_i \right\} \\ \text{s.c.} \left\{ \sum_{\substack{i=1 \\ \alpha_i \ge 0, \\ \alpha_i \ge 0, \\ \forall i \in \{1, \dots, n\}} \right. \end{cases}$$

The solutions of this dual problem are also solutions of the primal problem.

Simple optimization problem

Quadratic (hence convex) function to optimize and linear constraints

Remarks

Decision rule

Norm of the solution $oldsymbol{w}_0$

$$\|\boldsymbol{w}_0\|^2 = \sum_{\text{support vectors}} \alpha_i^0 \left(1 + y_i b\right) = \sum_{\text{support vectors}} \alpha_i^0 \left(1 + y_i b\right)$$

because of the constraint
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
.

Classifier margin

$$\gamma = \frac{1}{\|\boldsymbol{w}_0\|} = \left(\sum \alpha_i^0\right)^{-1/2}$$

Classification rule for a vector \boldsymbol{x}

$$f(\boldsymbol{x}) = \text{sign}\left(\sum_{x_i \text{ support vectors}} \alpha_i^0 y_i \boldsymbol{x}_i^T \boldsymbol{x} - b_0\right), \quad b_0 = \frac{1}{2} \left(\boldsymbol{w}_0^T \boldsymbol{x}^+ + \boldsymbol{w}_0^T \boldsymbol{x}^-\right),$$

where x^+ (resp. x^-) is a support vector belonging to the 1st (resp. 2nd) class.

Remarks

The quadratic optimization can only converge when the data is linearly separable:

-Support Vector Machines

Non-separable case: the "soft-margin SVM" classifier

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem

Non-separable case: the "soft-margin SVM" classifier

Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART

Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods Mixture models

Applications

Non-linear separability

Real-world data are often noisy and may not be linearly separable.

In that case, the SVM does not admit any solution to the primal (nor dual) optimization problem.

└─ Non-separable case: the "soft-margin SVM" classifier

Soft-margin SVM: Slack variables

We introduce slack variables $\xi_i \geq 0$ to relax the canonical hyperplane constraints:

$$y_i\left(\boldsymbol{w}^T\boldsymbol{x}_i-b\right) \geq 1-\xi_i \qquad \forall i \in \{1,\ldots,n\}$$

Non-separable case: the "soft-margin SVM" classifier

Soft-margin SVM: problem formulation

The problem becomes:

$$\begin{cases} \min_{\boldsymbol{w} \in \mathbb{R}^{n}, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{n} \xi_{i} \right\} \\ (\xi_{1}, \dots, \xi_{n}) \in \mathbb{R}^{n} \\ \textbf{u.c.} \begin{cases} y_{i} \left(\boldsymbol{w}^{T} \boldsymbol{x}_{i} - b \right) \geq 1 - \xi_{i} & \forall i \in \{1, \dots, n\} \\ \xi_{i} \geq 0 & \forall i \in \{1, \dots, n\} \end{cases} \end{cases}$$

C is a hyperparameter that can be tuned using cross-validation:

- ▶ When C is 0, the problem is the same as in the "hard-margin" SVM.
- When C is low (but not 0), we allow many points to violate the margin.
- ▶ As C becomes larger, less and less points can violate the margin (when $C = \infty$, one tends to the hard-margin SVM)

-Support Vector Machines

Non-separable case: the "soft-margin SVM" classifier

Lab example

This simple linear model underfits but generalizes well!

└─ Non-separable case: the "soft-margin SVM" classifier

Extensions

The ν -SVM classifier

$$\begin{array}{l} \text{Minimize } \frac{1}{2} \left\| \boldsymbol{w} \right\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i - \nu \gamma \\ \text{with the constraints} \\ y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i - b \right) \geq \gamma - \xi_i, \forall i, \\ \xi_i \geq 0, \forall i, \\ \gamma \geq 0 \end{array}$$

This formulation introduces a new hyperparameter ν that is an upper bound of the fraction of points that violate the margin.
Slides de cours

-Support Vector Machines

Non-linear preprocessing - kernels

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier

Non-linear preprocessing - kernels

Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Bandom Forest

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods Mixture models

linkture mou

Applications

Non-linear preprocessing

Search a non-linear transformation $\phi: \mathbb{R}^p \to \mathbb{R}^q$ ensuring linear separability.

Classical example The classes $\chi_1 = \{(1,1), (-1,-1)\}$ and $\chi_2 = \{(1,-1), (-1,1)\}$ are not linearly separable. Consider the application ϕ defined by

$$\phi: \begin{array}{c} \mathbb{R}^2 \to \mathbb{R}^6 \\ (x_1, x_2)^T \mapsto \left(\sqrt{2}x_1, \sqrt{2}x_1 x_2, 1, \sqrt{2}x_2, x_1^2, x_2^2\right)^T \end{array}$$

The data are separable in the plane (ϕ_1, ϕ_2)

Non-linear preprocessing - kernels

Example of separability

Non-linear SVM classifier

Decision rule after preprocessing

$$\begin{split} f(\tilde{\boldsymbol{x}}) &= \operatorname{sign}\left(g_{\boldsymbol{w},b}(\tilde{\boldsymbol{x}})\right) = \operatorname{sign}\left(\boldsymbol{w}^{T}\phi\left(\boldsymbol{x}\right) - b\right) \\ &= \operatorname{sign}\left(\sum_{\operatorname{support vectors}} \alpha_{i}^{0}y_{i}\phi\left(\boldsymbol{x}_{i}\right)^{T}\phi\left(\boldsymbol{x}\right) - b_{0}\right) \end{split}$$

Cost function to optimize

$$U(\boldsymbol{\alpha}) = -\frac{1}{2}\boldsymbol{\alpha}^{T}\boldsymbol{Y}\boldsymbol{G}\boldsymbol{Y}^{T}\boldsymbol{\alpha} + \sum_{i=1}^{n}\alpha_{i}$$

where G is the Gram matrix defined by $G_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$. The cost function $U(\alpha)$ has to be maximized under the constraints

$$0 \le \alpha_i \le \frac{1}{n}, \forall i$$
 and $\sum_{i=1}^n \alpha_i \ge \nu$

Conclusions: the cost function and the decision rule only depend on the inner products $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ and $\phi(\mathbf{x}_i)^T \phi(\mathbf{x})$.

Kernels

A kernel $k(\boldsymbol{x}, \boldsymbol{y}) = \phi(\boldsymbol{x})^T \phi(\boldsymbol{y})$ allows inner products $\phi(\boldsymbol{x}_i)^T \phi(\boldsymbol{x}_j)$ and $\phi(\boldsymbol{x}_i)^T \phi(\boldsymbol{x})$ to be computed with a reduced computational cost.

Example: $\boldsymbol{x} = (x_1, x_2)^T$ and $\phi(\boldsymbol{x}) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2\right)$

$$\phi(\boldsymbol{x})^{T} \phi(\boldsymbol{y}) = \begin{pmatrix} x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{2}x_{1}x_{2} \end{pmatrix} \cdot \begin{pmatrix} y_{1}^{2} \\ y_{2}^{2} \\ \sqrt{2}y_{1}y_{2} \end{pmatrix}$$
$$= x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}x_{2}y_{1}y_{2}$$
$$= (\boldsymbol{x}^{T}\boldsymbol{y})^{2}$$

Mercer kernels can be expressed as inner products

$$k(\boldsymbol{x}, \boldsymbol{y}) = \phi(\boldsymbol{x})^T \phi(\boldsymbol{y})$$

└─ Non-linear preprocessing - kernels

Classical kernels

Kernel	Expression		
Polynomial (of degree q)	$egin{aligned} k(oldsymbol{x},oldsymbol{y}) &= \left(\langle oldsymbol{x},oldsymbol{y} ight)^q \ q\in\mathbb{N}^+ \end{aligned}$		
Full polynomial	$egin{aligned} k(oldsymbol{x},oldsymbol{y}) &= (\langle oldsymbol{x},oldsymbol{y} angle + c)^q \ c \in \mathbb{R}^+, \ q \in \mathbb{N}^+ \end{aligned}$		
RBF (Gaussian)	$egin{aligned} k(oldsymbol{x},oldsymbol{y}) &= \exp\left(-rac{\ oldsymbol{x}-oldsymbol{y}\ ^2}{2\sigma^2} ight) \ \sigma \in \mathbb{R}^+ \end{aligned}$		
Mahalanobis	$egin{aligned} k(m{x},m{y}) &= \exp\left[-\left(m{x}-m{y} ight)^Tm{\Sigma}(m{x}-m{y}) ight] \ m{\Sigma} &= & diag\!\left(rac{1}{\sigma_1^2},,rac{1}{\sigma_p^2} ight)\!, \ \sigma_i \in \mathbb{R}^+ \end{aligned}$		

-Support Vector Machines

Non-linear preprocessing - kernels

Lab example

The model (Gaussian kernel) overfits the training data in this example.

Slides de cours

-Support Vector Machines

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests Unsupervised Classification Metho Optimization methods Hierarchical classification Density-based methods Mixture models Applications -Support Vector Machines

Multi-class classification: one-versus-all

Support Vector Machines

Multi-class classification= one-versus-one

$$\omega^* = \arg \max_{k=1,...,K} S_k(\boldsymbol{x}) \text{ with } S_k(\boldsymbol{x}) = \sum_{j \neq k} \operatorname{sign} \left[g_{ij}(\tilde{\boldsymbol{x}}) \right]$$

with g_{ij} the decision function between classes ω_i and ω_j .

In conflictual situations (same score for different classes), one can select the class with the highest prior probability.

-Support Vector Machines

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM

Other examples

Decision Trees Splitting data CART Random Forests Unsupervised Classification Methods Optimization methods Hierarchical classification Density-based methods Mixture models

Example of linear SVMs

└─ Other examples

Example of non-linear SVMs

Fig. 2. Model of the nonlinear transmission system originating from Chen *et al.* [12].

Fig. 3. Example of typical classification regions of an SVM and associated training points with channel $\hat{x}(n) = \hat{x}(n) - 0.9 \ \hat{x}^3(n), \ \hat{x}(n) = u(n) + 0.5u(n-1)$, and Gaussian white noise of power $\sigma_e^2 = 0.2$ and equalizer dimension M = 2, polynomial kernel order d = 3, constraint C = 5, and lag D = 0.

Fig. 4. Example of typical classification regions of an SVM and associated training points with the channel described in Fig. 3, except the equalizer lag is now D = 1.

Fig. 5. Example of typical classification regions of an SVM and associated training points with the channel described in Fig. 3, except the equalizer lag is now D = 2.

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data

CART

Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods

Mixture models

Applications

Decision Trees

Example of decision tree

FIGURE 8.2. A tree with arbitrary branching factor at different nodes can always be represented by a functionally equivalent binary tree—that is, one having branching factor B = 2 throughout, as shown here. By convention the "yes" branch is on the left, the "no" branch on the right. This binary tree contains the same information and implements the same classification as that in Fig. 8.1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Fatter Classification*. Corynight G. 2000 by John Wiley & Sons, Inc.

- Construction of the tree
- Classification rule

Splitting Rules

Inhomogeneity or impurity of the data

Entropy (Algorithm C4.5)

$$i_n = -\sum_j \frac{n_j}{n} \log_2\left(\frac{n_j}{n}\right)$$

Gini Index (CART)

$$i_n = \sum_j \frac{n_j}{n} \left(1 - \frac{n_j}{n} \right) = 1 - \sum_j \left(\frac{n_j}{n} \right)^2$$

Drop of Impurity

$$\Delta i_n = i_n - P_L i_L - P_R i_R$$

where $P_L = \frac{n_L}{n}$, $P_R = \frac{n_R}{n}$ are the proportions of the sets D_L , D_R . Choose the split associated with the maximum drop of impurity!

Gini Index or Entropy?

Example of 2 classes $(x = n_1/n)$

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data

CART

Random Forests

Unsupervised Classification Methods

- Optimization methods Hierarchical classification
- Density-based methods
- Mixture models

Applications

Implementation by default

Algorithm CART (Matlab: ClassificationTree)

- All variables are considered for each split
- All splits are considered
- ► Stopping rule: pure node or number of elements less than n_{min} (specified by the user)
- Splitting rule: Gini index

CART algorithm (example #1 for vectors in \mathbb{R}^2)

Example 1: A simple tree classifier

Consider the following n = 16 points in two dimensions for training a binary CART tree (B = 2) using the entropy impurity (Eq. 1).

Slides de cours						
Decision Trees						

CART algorithm (example #2 for qualitative data)

	Weight	Size	Age	Result
$oldsymbol{x}_1$	Light	Small	Young	Pass
$oldsymbol{x}_2$	Light	Small	Young	Pass
$oldsymbol{x}_3$	Light	Tall	Young	Pass
$oldsymbol{x}_4$	Light	Tall	Old	Fail
$oldsymbol{x}_5$	Light	Tall	Old	Pass
$oldsymbol{x}_6$	Light	Tall	Old	Fail
$oldsymbol{x}_7$	Heavy	Small	Old	Fail
$oldsymbol{x}_8$	Heavy	Small	Young	Fail
$oldsymbol{x}_9$	Light	Small	Old	Pass
$oldsymbol{x}_{10}$	Heavy	Tall	Old	Pass

First branch (Gini Index)

- Weight $\Rightarrow 2(1/7 + 1/15) \sim 0.42$
- Size $\Rightarrow 12/25 \sim 0.48$
- Age $\Rightarrow 2(3/40 + 3/20) \sim 0.45$

Lab example

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART

Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification Density-based methods Mixture models

Applications

Random Forests

Matlab: TreeBagger (options by default)

- Resampling all the data in the training set by bootstrap (and not a subset)
- Number of variables to select at random for each decision split: $\sqrt{n_{\rm var}}$

Lab example: number of trees (fraction of data per tree: 70%)

1 tree

5 trees

0.2

0

× Fibromes

Melanomes

0.22

Lab example: number of trees (fraction of data per tree: 70%)

Lab example: influence of the fraction of data per tree

Lab example: influence of the fraction of data per tree

Out-of-bag error

Matlab example

Comparison between CART and Random Forests

Book by G. James, D. Witten, T. Hastie and R. Tibshirani

FIGURE 8.8. Bagging and random forest results for the Heart data. The test error (black and orange) is shown as a function of B, the number of boolstrapped training sets used. Random forests were applied with $m = \sqrt{p}$. The dashed line indicates the test error resulting from a single classification tree. The green and blue traces show the OOB error, which in this case is considerably lower.

Importance of the different variables

Mean decrease in Gini index

Average of decreases of the Gini index when the attribute has been used for splitting

FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum. Decision Trees

References

CART and Random Forests

- L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and Regression Trees, Chapman & Hall, New-York, 1993.
- L. Breiman, Random Forests, Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
- R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd edition, Wiley, 2000.
- G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer, New-York, 2013.
Unsupervised Classification Methods

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forest

Unsupervised Classification Methods Optimization methods

Hierarchical classification Density-based methods Mixture models

Applications

Unsupervised learning

N unlabelled data vectors of \mathbb{R}^p denoted as $X = \{x_1, ..., x_N\}$ which should be split into K classes $\omega_1, ..., \omega_K$.

Motivations

- Supervised learning is costly
- ▶ The classes can change with time
- Provide some information about the data structure

Optimal solution

Number of partitions of X in K subsets

$$P(N,K) = \frac{1}{K!} \sum_{k=0}^{K} k^{N} (-1)^{K-k} C_{K}^{k} \qquad K < N$$

Example: $P(100,5) \approx 10^{68}$!

Partition with minimum mean square error

Mean square error of a partition

Mean square error (MSE) of the class ω_i and of the partition \boldsymbol{X}

$$E_i^2 = \sum_{k=1}^{N_i} d^2 (\boldsymbol{x}_k, \boldsymbol{g}_i), \qquad E^2 = \sum_{i=1}^{K} E_i^2$$

where $oldsymbol{g}_i = rac{1}{N_i} \sum_{k=1}^{N_i} oldsymbol{x}_k$ is the centroid of the class ω_i

Properties

$$\sum_{k=1}^{N_i} d^2 \left(\boldsymbol{x}_k, \boldsymbol{y} \right) = \sum_{k=1}^{N_i} d^2 \left(\boldsymbol{x}_k, \boldsymbol{g}_i \right) + N_i d^2 \left(\boldsymbol{g}_i, \boldsymbol{y} \right)$$

In particular, for $oldsymbol{y}=oldsymbol{g}$ (data centroid), we obtain

$$\sum_{i=1}^{K} \sum_{k=1}^{N_i} d^2(\boldsymbol{x}_k, \boldsymbol{g}) = \underbrace{\sum_{i=1}^{K} \sum_{k=1}^{N_i} d^2(\boldsymbol{x}_k, \boldsymbol{g}_i)}_{E^2} + \sum_{i=1}^{K} N_i d^2(\boldsymbol{g}_i, \boldsymbol{g})$$

MSE of X = within-class MSE + between-class MSE

K-means Algorithm (ISODATA)

Search a partition of X ensuring a local minimum of E^2

- 1. Initial choice of the number of classes and the class centroids
- 2. Assign each vector x_i to ω_j (using the centroid distance rule) such that

$$d(\boldsymbol{x}_i, \boldsymbol{g}_j) = \inf_k d(\boldsymbol{x}_i, \boldsymbol{g}_k)$$

- 3. Compute the centroids \boldsymbol{g}_k^* of the new classes ω_k^*
- 4. Repeat steps 2) and 3) until convergence
- Improved version of ISODATA
 - Two classes are merged if their centroids are close
 - \blacktriangleright A class is split if it contains too many vectors x_i or if its mean square error is too large
- Convergence: see notes or textbooks
- Example: https://tmalon.github.io/k-means/

Unsupervised Classification Methods

Optimization methods

Unsupervised Classification Methods

└─ Optimization methods

Unsupervised Classification Methods

Optimization methods

Unsupervised Classification Methods

Optimization methods

Initialization Problems

Thanks to Jing Gao from SUNY Buffalo university for her slides!!

Initialization Problems

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Irregular Shapes

Original Points

K-means (2 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests

Unsupervised Classification Methods

Optimization methods

Hierarchical classification

Density-based methods Mixture models

Applications

Hierarchical classification

Ascending hierarchy: method of distances

Distance Min (single linkage algorithm)

$$d(X_i, X_j) = \min d(\boldsymbol{x}, \boldsymbol{y}) \qquad \boldsymbol{x} \in X_i, \boldsymbol{y} \in X_j$$

This distance favors elongated classes

Distance Max (complete linkage algorithm)

$$d(X_i, X_j) = \max d(\boldsymbol{x}, \boldsymbol{y}) \qquad \boldsymbol{x} \in X_i, \boldsymbol{y} \in X_j$$

Average linkage algorithm

$$d(X_i, X_j) = \frac{1}{N_i N_j} \sum_{\boldsymbol{x} \in X_i, \boldsymbol{y} \in X_j} d(\boldsymbol{x}, \boldsymbol{y})$$

Distance between the means

$$d(X_i, X_j) = d\left(\boldsymbol{g}_i, \boldsymbol{g}_j\right)$$

where X_i and X_j have cardinals N_i and N_j and centroids g_i and g_j . Representation using a tree whose nodes indicate the different groups

Classification of Modulations

Classification of Modulations

Unsupervised Classification Methods

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification

Density-based methods

Mixture models

Applications

Density-based clustering methods

Definitions

 $\blacktriangleright \ {\sf Neighborhood} \ {\sf of} \ {\sf a} \ {\sf point} \ p \in {\boldsymbol X}$

$$N_{\epsilon}(p) = \{q \in \boldsymbol{X} | d(p,q) \le \epsilon\}$$

- Core point: a point p is a core point if it has more than MinPts neighbors in $N_{\epsilon}(p)$.
- ▶ Border point: a point p is a border point if it has less than MinPts neighbors in N_e(p) and if it is in the neighborhood of a core point
- Noise point: a noise point is a point that is not a core point nor a border point

Core, border and noise points

Original Points

Point types: core, border and outliers

$$\varepsilon$$
 = 10, MinPts = 4

Thanks to Jing Gao from SUNY Buffalo university for her slides!!

Relationships between different points

Directly density-reachable points

A point q is directly reachable from p for $(\epsilon, MinPts)$ if

- ▶ $q \in N_{\epsilon}(p)$
- ▶ p is a core point, i.e., $N_{\epsilon}(p)$ contains more than MinPts points.

Example

MinPts = 4

- \blacktriangleright q is directly density-reachable from p
- p is not directly density-reachable from q (q is not a core point)
 - It is an asymmetric relationship!

Relationships between different points

Density-reachable points

A point q is density-reachable from p for $(\epsilon, {\rm MinPts})$ if there is chain of points p_i such that

- ▶ $p_1 = p$ and $p_N = q$
- each point p_{i+1} is directly density-reachable from p_i .

Example

- q is directly density-reachable from p
- p is not directly density-reachable from q (q is not a core point)

It is an asymmetric relationship!

Density-based methods

Relationships between different points

Density-connectivity

Points p and q are density-connected for $(\epsilon, \text{MinPts})$ if there is an object r such that both p and q are density reachable from r.

Example

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Cluster definition

A cluster C is defined as a maximal set of density-connected points

- Maximality: if $p \in C$ and if q is density-reachable from p, then $q \in C$.
- Connectivity: for all $(p,q) \in C$, p and q are density-connected.

Example

DBSCAN

A simple algorithm

- \blacktriangleright Select a point p
- Determine all density-reachable points from p for $(\epsilon, MinPts)$.
- \blacktriangleright If p is a core point, i.e., if the cardinal of $N_{\epsilon}(p)$ is larger than ${\rm MinPts},$ a cluster is formed
- \blacktriangleright If p is a border point, DBSCAN visits the next point
- Continue the procedure until all points have been visited

The DBSCAN algorithm generally provides a result independent of the order the points have been processed.

How can we choose ϵ and MinPts?

Original Points

- Cannot handle varying densities
- sensitive to parameters—hard to determine the correct set of parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Thanks to Jing Gao from SUNY Buffalo university for her slides!!

How can we choose ϵ and MinPts?

Some ideas

- Points belonging to a cluster have a distance to their k-nearest neighbor (denoted as k-dist) smaller than noise points
- \blacktriangleright Compute all the k-dist values and sort them in increasing order
- Choose e as the value of k-dist associated with a sharp change in the curve (this value does not vary significantly with the value of k)

Example

Conclusions

Pros

- Clusters of arbitrary shapes
- Robustness to noise

Cons

- Problems with clusters of different densities
- Parameter determination can be difficult

Some references (related to DBSCAN)

- M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. Int. Conf. Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, Aug. 1996.
- J. Gao, Slides on Data Mining and Bioinformatics, University at Buffalo, https://www.cse.buffalo.edu/jing/cse601/fa13/.

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification

Mixture models

Applications

Slides de cours Unsupervised Classification Methods Mixture models

Gaussian mixture (unsupervised learning)

Idea: N unlabelled data vectors of \mathbb{R}^p denoted as $X = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ emerge from K Gaussian components/classes denoted as $\omega_1, ..., \omega_K$.

Gaussian mixture model (GMM)

Definition

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(3)

• $\boldsymbol{\theta} = (\pi_1, \dots, \pi_K, \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K)$ contains all the parameters of the mixture model.

Example: K = 3 seems reasonable (θ is unknown)

Unsupervised Classification Methods

Mixture models

Gaussian mixture (supervised learning)

When the N data $X = {x_1, ..., x_n}$ are *complete* (i.e. labelled, assigned to classes), the parameter estimation problem is straightforward (each Gaussian can be estimated separately). Besides the data, we also have their labels: ${(x_1, y_1), ..., (x_n, y_n)}$ where $y_i \in {\omega_1, ..., \omega_K}$.

Gaussian mixture model (GMM)

Definition

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(4)

► Assignments: binary variable $\delta(k|i)$ assigns data \mathbf{x}_i to the *k*th Gaussian (class ω_k) if $\delta(k|i) = 1$ ($\delta(k|i) = 0$ otherwise).

Example: K = 3 is now given (along with data assignments).

Gaussian mixture (supervised learning)

When the N data $X = {x_1, ..., x_N}$ are *complete* (i.e., labelled or assigned to classes), the parameter estimation problem is straightforward (each Gaussian density can be estimated separately).

Estimation of the Gaussian mixture model

Example: K = 3 is now given (along with data assignments).

Gaussian mixture (back to unsupervised case)

Without assignment (unsupervised learning), we start from an initial setting of the parameters $\boldsymbol{\theta}$: $\boldsymbol{\theta}^0 = (\pi_1^0, \dots, \pi_K^0, \boldsymbol{\mu}_1^0, \boldsymbol{\Sigma}_1^0, \dots, \boldsymbol{\mu}_K^0, \boldsymbol{\Sigma}_K^0)$ and compute

$$P(y_i = \omega_j | \boldsymbol{x}_i, \boldsymbol{\theta}^0) = \frac{p(\boldsymbol{x}_i | y_i = \omega_j, \boldsymbol{\theta}^0) P(\omega_j)}{\sum_{k=1}^{K} p(\boldsymbol{x}_i | y_i = \omega_k, \boldsymbol{\theta}^0) P(\omega_k)}$$
(5)

$$P(y_i = \omega_j | \boldsymbol{x}_i, \boldsymbol{\theta}^0) = \frac{\pi_j^0 p(\boldsymbol{x}_i | \boldsymbol{\mu}_j^0, \boldsymbol{\Sigma}_j^0)}{\sum_{k=1}^K \pi_k^0 p(\boldsymbol{x}_i | \boldsymbol{\mu}_k^0, \boldsymbol{\Sigma}_k^0)}$$
(6)

Soft assignment

 $\widehat{\delta}(j|i) = P(y_i = \omega_j | \boldsymbol{x}_i, \boldsymbol{\theta}^0)$

$$\blacktriangleright \sum_{j=1}^{K} \widehat{\delta}(j|i) = 1.$$

Expectation-Maximization (EM-Algorithm for GMM estimation)

Without assignment (unsupervised case), we start from θ^0 and iterate soft-assignments that "complete the incomplete data" (Expectation-step) and parameter refinement (Maximisation-step). We can show that the new setting of the parameters $\theta^{(k+1)}$ increases the log-likelihood of the "completed" data.

EM-algorithm:

- 1. Initialization Specify $\theta^{(k=0)}$.
- 2. Repeat

(E-step) soft-assignments of $\mathbf{x_i} \ \forall i$

$$\widehat{\delta}(j|i) \leftarrow P(y_i = \omega_j | \mathbf{x_i}, \boldsymbol{\theta}^{(k)})$$
 (7)

(M-step) Refine $\theta^{(k+1)}$:

$$\begin{split} & \widehat{\pi}_{j} \leftarrow \frac{\widehat{n}_{j}}{n} \quad \text{with} \quad \widehat{n}_{j} = \sum_{i=1}^{n} \widehat{\delta}(j|i) \\ & \widehat{\mu}_{j} \leftarrow \frac{1}{\widehat{n}_{j}} \sum_{i=1}^{n} \widehat{\delta}(j|i) \mathbf{x}_{i} \\ & \widehat{\Sigma}_{j} \leftarrow \frac{1}{\widehat{n}_{j}} \sum_{i=1}^{n} \widehat{\delta}(j|i) (\mathbf{x}_{i} - \widehat{\mu}_{j}) (\mathbf{x}_{i} - \widehat{\mu}_{j})^{T} \\ & k \leftarrow k+1 \end{split}$$

EM-Algorithm for GMM estimation (demo from book by Bishop*)

* Christopher Bishop, *Pattern Recognition and Machine Learning*. New-York: Springer Verlag, 2006.

Slides de cours Unsupervised Classification Methods Mixture models

EM-Algorithm for GMM estimation (demo 2/3)

EM-Algorithm for GMM estimation (demo 3/3)

Convergence

- The EM algorithm monotonically increases the log-likelihood of the data.
- $\blacktriangleright \ \text{We have } l(\pmb{\theta}^0) < l(\pmb{\theta}^1) < ... < l(\pmb{\theta}^k) \ \text{with} \ l(\pmb{\theta}^k) = \sum_{i=1}^n \ \text{In} \ p(\pmb{x_i}|\pmb{\theta}^k)$

Unsupervised Classification Methods

Mixture models

Mélange de lois gaussiennes généralisées asymétriques (AGGD) Estimation des paramètres du mélange Sélection de modèle Conclusions et perspectives

Mélange de lois AGGD

Vraisemblance du mélange

$$p(x|\theta) = \sum_{j=1}^{M} p_j p(x|\theta_j)$$

avec

$$p(x|\theta_j) = \begin{cases} \frac{\delta_j^{1/\lambda_j}}{\gamma_j^{1/\lambda_j} \Gamma(1+1/\lambda_j)} \exp\left(-\frac{\delta_j}{\gamma_j} \left(\frac{\mu_j - x}{\alpha_j}\right)^{\lambda_j}\right) & \text{ si } x < \mu_j \\ \frac{\delta_j^{1/\lambda_j}}{\gamma_j^{1/\lambda_j} \Gamma(1+1/\lambda_j)} \exp\left(-\frac{\delta_j}{\gamma_j} \left(\frac{x - \mu_j}{1 - \alpha_j}\right)^{\lambda_j}\right) & \text{ si } x \ge \mu_j \end{cases}$$

α_j : paramètre d'asymétrie

- λ_j : paramètre de forme
- μ_i : paramètre de décalage
- γ_i : paramètre d'échelle
- $\delta_j = rac{2\alpha_j^{\lambda_j}(1-\alpha_j)^{\lambda_j}}{\alpha_j^{\lambda_j}+(1-\alpha_j)^{\lambda_j}}$
- M : nombre de composantes

5/78

Unsupervised Classification Methods

└─ Mixture models

Mélange de lois gaussiennes généralisées asymétriques (AGGD) Estimation des paramètres du mélange **Sélection de modèle** Conclusions et perspectives

Algorithme 2

Algorithme EMB + Minimum message length Fusion de modes proches

152/154

Summary

Introduction

What is classification? Evaluating classifiers Underfitting/Overfitting

Statistical Classification

Bayesian rule Parametric/Non-parametric methods Hyperparameter selection Examples

Support Vector Machines

Introduction and motivation Optimal separating hyperplane Optimization problem Non-separable case: the "soft-margin SVM" classifier Non-linear preprocessing - kernels Multi-class classification with SVM Other examples

Decision Trees

Splitting data CART Random Forests

Unsupervised Classification Methods

Optimization methods Hierarchical classification

Density-based methods

Mixture models

Applications

Examples of Applications

Bayes classifier

- Document classification
- Detection of SPAMS in emails

SVM

- Face detection
- Object detection and recognition

Neural networks

- Image recognition
- Natural language processing
- Object detection and recognition

CART and Random Forests

Medical applications