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Exercice 1

We consider a classification problem with two classes ω1 and ω2 whose densities are

f(x|ωi) =
1√
2πσ2

exp

[
− 1

2σ2
(x−mi)

2

]
i = 1, 2 (1)

with x ∈ R, σ > 0 and m1 > m2.

1. (3 pts) Derive the Bayesian classification rule associated with this problem when we use the 0− 1
cost function and when the two classes have the prior probabilities P (ω1) = P1 and P (ω2) = P2.
Interpret this result using the centroid distance rule when P1 = P2 and P1 > P2. Express the
probability of error of this rule as a function ofm1,m2, σ2 and the cumulative distribution function
of the N (0, 1) Gaussian distribution denoted as F .

Response: The Bayesian classifier accepts the class ω1 (denoted as d∗(x) = ω1 if

f(x|ω1)P (ω1) ≥ f(x|ω2)P (ω2)

or equivalently if

ln[f(x|ω1)] + ln[P (ω1)] ≥ ln[f(x|ω2)] + ln[P (ω2)].

Straightforward computations lead to

d∗(x) = ω1 ⇔
m1 −m2

σ2
x ≥ m2

1 −m2
2

2σ2
+ ln

(
P2

P1

)
.

Since m1 > m2, we obtain

d∗(x) = ω1 ⇔ x ≥ m1 +m2

2
+

σ2

m1 −m2
ln

(
P2

P1

)
.

When the two classes are equiprobable, we have

d∗(x) = ω1 ⇔ x ≥ m1 +m2

2

which is the centroid distance rule, i.e., the class ω1 is accepted if x is closer to its centroid m1

than to the other class centroid m2. When P1 > P2, the class ω1 is more likely than the class ω2.
In this case, the threshold

S =
m1 +m2

2
+

σ2

m1 −m2
ln

(
P2

P1

)
is smaller than the centroid m1+m2

2 (since ln (P2/P1) < 0 and m1 −m2 > 0), which corresponds
to accepting the class ω1 more often than in the equiprobable case. This property is in agreement
with P1 > P2.
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The error probability of the Bayesian classifier is defined as

Pe = P [d∗(X) = ω1|X ∈ ω2]P (X ∈ ω2) + P [d∗(X) = ω2|X ∈ ω1]P (X ∈ ω1)

or equivalently
Pe = P [X > S|X ∈ ω2]P2 + P [X > S|X ∈ ω1]P1.

In order to use the cumulative distribution function of theN (0, 1) distribution, we have to express
the two probabilities as follows

Pe = P

[
X −m2

σ
>
S −m2

σ
|X −m2

σ
∼ N (0, 1)

]
P2+P

[
X −m1

σ
<
S −m1

σ
|X −m1

σ
∼ N (0, 1)

]
P1.

Finally, we obtain

Pe = P2

[
1− F

(
S −m2

σ

)]
+ P1F

(
S −m1

σ

)
with

S −m2

σ
=
m1 −m2

σ
+

σ

m1 −m2
ln

(
P2

P1

)
and

S −m1

σ
=
m2 −m1

σ
+

σ

m1 −m2
ln

(
P2

P1

)
.

2. (2 pts) Show that the Bayesian decision rule can be written as

d∗(x) = ω1 ⇔ g [a(x)] =
1

1 + exp [a(x)]
≤ 1

2

where

a(x) = ln

[
f(x|ω1)P (ω1)

f(x|ω2)P (ω2)

]
.

For the example of the previous question, derive the function a(x) and prove that is is affine, i.e.,
a(x) = a1x+a2, where a1 and a2 are two functions ofm1,m2, σ

2, P1, P2 that you will determine.

Response: the Bayesian decision rule

d∗(x) = ω1 ⇔ f(x|ω1)P (ω1) ≥ f(x|ω2)P (ω2)

is equivalent to

d∗(x) = ω1 ⇔ a(x) = ln

[
f(x|ω1)P (ω1)

f(x|ω2)P (ω2)

]
≥ 0

or, by using the fact that the function g is a decreasing function

d∗(x) = ω1 ⇔ g [a(x)] ≤ g(0) = 1

2
.

After replacing the expressions of the densities f(x|ω1) and f(x|ω1) in the expression of a(x), we
obtain

a(x) = ln

[
exp

(
− 1

2σ2 (x−m1)
2
)
P (ω1)

exp
(
− 1

2σ2 (x−m2)2
)
P (ω2)

]
i.e.,

a(x) =
m1 −m2

σ2
x+

m2
2 −m2

1

2σ2
+ ln

[
P (ω1)

P (ω2)

]
that is indeed an affine function of x with

a1 =
m1 −m2

σ2
and a2 =

m2
2 −m2

1

2σ2
+ ln

[
P (ω1)

P (ω2)

]
.
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3. (4 pts) Based on the results of the previous question, we can define a so-called logistic regression
classifier defined as

dLR(x) = ω1 ⇔ ga(x) =
1

1 + exp(−a1x− a2)
≤ 1

2
.

where a = (a1, a2)
T . In a practical application, the parameter vector a can be determined using

training data from the two classes ω1 and ω2 denoted as χ = {(x1, y1), (x2, y2),..., (xn, yn)}
where yi = 0 if xi belongs to class ω1 and yi = 1 else.

• A first idea is to determine the vector a that minimizes the cost function

C1(χ,a) =
1

n

n∑
i=1

[ga(xi)− yi]2 .

Why do you think that this cost function is not appropriate for estimating the vector a?

• Another idea is to minimize the cost function

C2(χ,a) =
1

n

n∑
i=1

{−yi ln[ga(xi)]− (1− yi) ln[1− ga(xi)]}

with respect to a. By considering samples from the class ω1 (such that yi = 0), analyze the
value of the ith term of the cost function when ga(xi) is close to 1 or close to 0 and explain
why this cost function is appropriate. Calculate the gradient of this cost function and show
that the steepest descent rule can be expressed as

an+1
1 = an1 −

µ

n

n∑
i=1

[ga(xi)− yi]xi, and an+1
2 = an2 −

µ

n

n∑
i=1

[ga(xi)− yi].

Response: We can guess that the first cost functionC1(χ,a) is non-convex and thus not appropriate
for its minimization. Let’s analyze the second cost function C2(χ,a). When yi = 1, the ith
term of this cost function reduces to − ln[ga(xi)], which equals 0 when ga(xi) is close to 1 and
tends to +∞ when ga(xi) tends to 0. When yi = 0, the ith term of the cost function reduces to
− ln[1 − ga(xi)], which equals 0 when ga(xi) = 0 and tends to +∞ when ga(xi) tends to 1. As
a consequence, minimizing the cost function C2(χ,a) will provide a classifier trying to minimize
the classification errors, which is precisely what we want.

The gradient of the cost function C2(x,a) is defined as

∂C2(χ,a)

∂a
=

1

n

n∑
i=1

{
−yi

1

ga(xi)

∂ga(xi)

∂a
+ (1− yi)

1

1− ga(xi)
∂ga(xi)

∂a

}
Straightforward computations lead to

an+1
1 = an1 −

µ

n

n∑
i=1

[ga(xi)− yi]xi, and an+1
2 = an2 −

µ

n

n∑
i=1

[ga(xi)− yi].
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Questions related to the working paper

Remark: please make sure to justify all your responses very carefully.

1. (1 pt) Explain why higher-order statistics (HOS) are resistant to additive colored Gaussian noise
Response: the cumulants of orders higher than 2 of a Gaussian sequence are equal to zero. Thus,
if the noise g(n) and the signal of interest x(n) are independent, the cumulants of the signal plus
noise (received signal y(n) = x(n) + g(n)) are equal to the cumulants of the signal plus the
cumulants of the noise, i.e., Ck,y = Ck,x + Ck,g. When the noise g(n) is Gaussian, its cumulants
of order higher than 2 are zero, i.e., Ck,g = 0 for k > 2, which proves that the cumulants of order
k ≥ 3 of the received signal are equal to the cumulants of the noiseless signal of interest. In other
words, Ck,y = Ck,x, for k ≥ 3, showing a kind of non-sensivity to an additive Gaussian noise
g(n). This is what the authors mean by “resistant to additive Gaussian noise”.

2. (1 pt) Express the 4th order cumulantC40 of the signal y(n) as a function ofE[y4(n) andE[y2(n)].
Response: Using (4), we obtain

C40 = E[y4(n)]− 3E2[y2(n)].

3. (1 pt). What is a BPSK constellation? Demonstrate that C40 = −2 for this constellation.
Response: A BPSK constellation corresponds to the two equiprobable symbols s1 = 1 and s2 =
−1. For this constellation, we have y2(n) = y4(n) = 1, hence C40 = 1− 3 = −2.

4. (1 pt). What is a PAM(4) constellation? Demonstrate that C40 = −1.36 for this constellation.
Response: A PAM(4) constellation corresponds to the four equiprobable symbols s1 = a, s2 =
−a, s3 = 3a and s4 = −3a. For this constellation, we have y2(n) = a2 with probability 1/2
and y2(n) = 9a2 with probability 1/2. Thus, E[y2(n)] = 5a2. Similarly, y4(n) = a4 with
probability 1/2 and y4(n) = 81a4 with probability 1/2. Thus, E[y4(n)] = 41a4 hence C40 =
41a4 − 3(25a4) = −34a4. It is mentioned in the paper that C21 = E[y2(n)] = 5a2 = 1, which
leads to a = 1/

√
5, leading to C40 = −34/25 = −1.36.

5. (1 pt) Explain why C42 is unaffected by a (deterministic) phase rotation.
Response: We have

C42 = cum[y(n), y(n), y∗(n), y∗(n)] = E[|y(n)|4]− 2E2[|y(n)|2]− E[y2(n)]E[(y∗(n))2].

When y(n) is multiplied by ejφ, the two first terms E[|y(n)|4] and E2[|y(n)|2] are unchanged
since |y(n)ejφ| = |y(n)|. When y(n) is multiplied by ejφ, the last term equals

E[y2(n)e2jφ]E[(y∗(n))2e−2jφ] = E[y2(n)]E[(y∗(n))2]

which does not depend on φ. As a consequence,C42 is unaffected by a deterministic phase rotation.

6. (1 pt) ? Demonstrate Eq. (15).
Response: for equiprobable hypotheses H0 and H1, the Bayesian classifier accepts H0 if

1

σ0
exp

{
−(S − µ0)2

2σ20

}
>

1

σ1
exp

{
−(S − µ1)2

2σ21

}
or equivalently if

ln

(
σ21
σ20

)
+

(S − µ1)2

2σ21
− (S − µ0)2

2σ20
> 0.

This inequality can be re-written

(S − µ1)2

2σ21
− (S − µ0)2

2σ20
+

(µ1 − µ0)2

σ21 − σ20
< ln

(
σ21
σ20

)
+

(µ1 − µ0)2

σ21 − σ20
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or

σ20σ
2
1

σ21 − σ20

[
(S − µ1)2

2σ21
− (S − µ0)2

2σ20
+

(µ1 − µ0)2

σ21 − σ20

]
<

σ20σ
2
1

σ21 − σ20

[
ln

(
σ21
σ20

)
+

(µ1 − µ0)2

σ21 − σ20

]
.

Using straightforward computations, we can show that this inequality can be written

(S − µ)2 < a2

with

a2 =
σ20σ

2
1

σ21 − σ20

[
ln

(
σ21
σ20

)
+

(µ1 − µ0)2

σ21 − σ20

]
and µ =

(
µ0
σ20
− µ1
σ21

)
σ20σ

2
1

σ21 − σ20
which proves (15).

7. (1 pt) Explain where the decision rule (18) comes from.
Response: Suppose that we want to use C40 for the classification of PSK(8), QAM(4,4), PAM(4)
and BPSK constellations. We have C40 = 0 for PSK(8), C40 = −0.68 for QAM(4,4), C40 =
−1.36 for PAM(4) and C40 = −2 for BPSK, which leads to the following rule

BPSK if C40 <
−2− 1.36

2
= −1.68 (2)

PAM(4) if − 1.68 < C40 <
−1.36− 0.68

2
= −1.02 (3)

QAM(4,4) if − 1.02 < C40 <
−0.68

2
= −0.34 (4)

PSK(8) if C40 > −0.34 (5)

This rule is equivalent to (18).

8. (1 pt) In Example 3, explain why the pdf f(g) = (1− ε)fN (g) + εfI(g) corresponds to the pres-
ence of outliers in the data. What is the outlier probability for this pdf?
Response: This pdf corresponds to a percentage of 1− ε noise samples distributed according to a
zero mean Gaussian distribution with variance σ2N and a percentage of ε noise samples distributed
according to a zero mean Gaussian distribution with variance σ2I = 100σ2N . The samples associ-
ated with theN (0, σ2I ) distribution are the outliers. There is a probability of ε to have an outlier in
the data.

9. (1 pt) In Example 7, explain why the presence of frequency offset generates symbol points that are
smeared along arcs.
Response: The presence of frequency offset is modeled by the term exp(j2πnf0T ). For n = 1,
the first symbol is rotated by a factor exp(j2πf0T ). For n = 2, the second symbol is rotated
by a factor exp(j4πf0T ) etc... As consequence, the received symbols belong to arcs defined by
sn exp(j2πnf0T ).

10. (1pt) In Example 13, where does the statistics qLLR comes from?.
Response: If we consult one of the references such as [19], we can see that qLLR is an approxima-
tion of the likelihood ratio test statistics for distinguishing BPSK from MPSK(M) with M ≥ 4.

11. (1pt) What kind of methods do the authors recommend when the observed data are drawn from an
unknown symbol set?
Response: The authors mention in their conclusion that hierarchical agglomerative clustering al-
gorithms (as those based on dendograms that have been studied in this course) could be used for
these cases.
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