Corrections for the Classification Exam - Third Year - Speciality Signal and Image Processing

Monday, November 28, 2016
Lecture notes and slides authorized

Exercice 1

We consider a classification problem with two classes ω_{1} and ω_{2} whose densities are

$$
\begin{equation*}
f\left(x \mid \omega_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(x-m_{i}\right)^{2}\right] \quad i=1,2 \tag{1}
\end{equation*}
$$

with $x \in \mathbb{R}, \sigma>0$ and $m_{1}>m_{2}$.

1. (3 pts) Derive the Bayesian classification rule associated with this problem when we use the $0-1$ cost function and when the two classes have the prior probabilities $P\left(\omega_{1}\right)=P_{1}$ and $P\left(\omega_{2}\right)=P_{2}$. Interpret this result using the centroid distance rule when $P_{1}=P_{2}$ and $P_{1}>P_{2}$. Express the probability of error of this rule as a function of m_{1}, m_{2}, σ^{2} and the cumulative distribution function of the $\mathcal{N}(0,1)$ Gaussian distribution denoted as F.

Response: The Bayesian classifier accepts the class ω_{1} (denoted as $d^{*}(x)=\omega_{1}$ if

$$
f\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right) \geq f\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

or equivalently if

$$
\ln \left[f\left(x \mid \omega_{1}\right)\right]+\ln \left[P\left(\omega_{1}\right)\right] \geq \ln \left[f\left(x \mid \omega_{2}\right)\right]+\ln \left[P\left(\omega_{2}\right)\right]
$$

Straightforward computations lead to

$$
d^{*}(x)=\omega_{1} \Leftrightarrow \frac{m_{1}-m_{2}}{\sigma^{2}} x \geq \frac{m_{1}^{2}-m_{2}^{2}}{2 \sigma^{2}}+\ln \left(\frac{P_{2}}{P_{1}}\right) .
$$

Since $m_{1}>m_{2}$, we obtain

$$
d^{*}(x)=\omega_{1} \Leftrightarrow x \geq \frac{m_{1}+m_{2}}{2}+\frac{\sigma^{2}}{m_{1}-m_{2}} \ln \left(\frac{P_{2}}{P_{1}}\right) .
$$

When the two classes are equiprobable, we have

$$
d^{*}(x)=\omega_{1} \Leftrightarrow x \geq \frac{m_{1}+m_{2}}{2}
$$

which is the centroid distance rule, i.e., the class ω_{1} is accepted if x is closer to its centroid m_{1} than to the other class centroid m_{2}. When $P_{1}>P_{2}$, the class ω_{1} is more likely than the class ω_{2}. In this case, the threshold

$$
S=\frac{m_{1}+m_{2}}{2}+\frac{\sigma^{2}}{m_{1}-m_{2}} \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

is smaller than the centroid $\frac{m_{1}+m_{2}}{2}$ (since $\ln \left(P_{2} / P_{1}\right)<0$ and $m_{1}-m_{2}>0$), which corresponds to accepting the class ω_{1} more often than in the equiprobable case. This property is in agreement with $P_{1}>P_{2}$.

The error probability of the Bayesian classifier is defined as

$$
P_{e}=P\left[d^{*}(X)=\omega_{1} \mid X \in \omega_{2}\right] P\left(X \in \omega_{2}\right)+P\left[d^{*}(X)=\omega_{2} \mid X \in \omega_{1}\right] P\left(X \in \omega_{1}\right)
$$

or equivalently

$$
P_{e}=P\left[X>S \mid X \in \omega_{2}\right] P_{2}+P\left[X>S \mid X \in \omega_{1}\right] P_{1} .
$$

In order to use the cumulative distribution function of the $\mathcal{N}(0,1)$ distribution, we have to express the two probabilities as follows
$P_{e}=P\left[\left.\frac{X-m_{2}}{\sigma}>\frac{S-m_{2}}{\sigma} \right\rvert\, \frac{X-m_{2}}{\sigma} \sim \mathcal{N}(0,1)\right] P_{2}+P\left[\left.\frac{X-m_{1}}{\sigma}<\frac{S-m_{1}}{\sigma} \right\rvert\, \frac{X-m_{1}}{\sigma} \sim \mathcal{N}(0,1)\right] P_{1}$.
Finally, we obtain

$$
P_{e}=P_{2}\left[1-F\left(\frac{S-m_{2}}{\sigma}\right)\right]+P_{1} F\left(\frac{S-m_{1}}{\sigma}\right)
$$

with

$$
\frac{S-m_{2}}{\sigma}=\frac{m_{1}-m_{2}}{\sigma}+\frac{\sigma}{m_{1}-m_{2}} \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

and

$$
\frac{S-m_{1}}{\sigma}=\frac{m_{2}-m_{1}}{\sigma}+\frac{\sigma}{m_{1}-m_{2}} \ln \left(\frac{P_{2}}{P_{1}}\right) .
$$

2. (2 pts) Show that the Bayesian decision rule can be written as

$$
d^{*}(x)=\omega_{1} \Leftrightarrow g[a(x)]=\frac{1}{1+\exp [a(x)]} \leq \frac{1}{2}
$$

where

$$
a(x)=\ln \left[\frac{f\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right)}{f\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)}\right]
$$

For the example of the previous question, derive the function $a(x)$ and prove that is is affine, i.e., $a(x)=a_{1} x+a_{2}$, where a_{1} and a_{2} are two functions of $m_{1}, m_{2}, \sigma^{2}, P_{1}, P_{2}$ that you will determine.

Response: the Bayesian decision rule

$$
d^{*}(x)=\omega_{1} \Leftrightarrow f\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right) \geq f\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

is equivalent to

$$
d^{*}(x)=\omega_{1} \Leftrightarrow a(x)=\ln \left[\frac{f\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right)}{f\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)}\right] \geq 0
$$

or, by using the fact that the function g is a decreasing function

$$
d^{*}(x)=\omega_{1} \Leftrightarrow g[a(x)] \leq g(0)=\frac{1}{2}
$$

After replacing the expressions of the densities $f\left(x \mid \omega_{1}\right)$ and $f\left(x \mid \omega_{1}\right)$ in the expression of $a(x)$, we obtain

$$
a(x)=\ln \left[\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left(x-m_{1}\right)^{2}\right) P\left(\omega_{1}\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left(x-m_{2}\right)^{2}\right) P\left(\omega_{2}\right)}\right]
$$

i.e.,

$$
a(x)=\frac{m_{1}-m_{2}}{\sigma^{2}} x+\frac{m_{2}^{2}-m_{1}^{2}}{2 \sigma^{2}}+\ln \left[\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right]
$$

that is indeed an affine function of x with

$$
a_{1}=\frac{m_{1}-m_{2}}{\sigma^{2}} \quad \text { and } \quad a_{2}=\frac{m_{2}^{2}-m_{1}^{2}}{2 \sigma^{2}}+\ln \left[\frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}\right] .
$$

3. (4 pts) Based on the results of the previous question, we can define a so-called logistic regression classifier defined as

$$
d_{\mathrm{LR}}(x)=\omega_{1} \Leftrightarrow g_{\boldsymbol{a}}(x)=\frac{1}{1+\exp \left(-a_{1} x-a_{2}\right)} \leq \frac{1}{2}
$$

where $\boldsymbol{a}=\left(a_{1}, a_{2}\right)^{T}$. In a practical application, the parameter vector \boldsymbol{a} can be determined using training data from the two classes ω_{1} and ω_{2} denoted as $\chi=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ where $y_{i}=0$ if x_{i} belongs to class ω_{1} and $y_{i}=1$ else.

- A first idea is to determine the vector \boldsymbol{a} that minimizes the cost function

$$
C_{1}(\chi, \boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left[g_{\boldsymbol{a}}\left(x_{i}\right)-y_{i}\right]^{2}
$$

Why do you think that this cost function is not appropriate for estimating the vector \boldsymbol{a} ?

- Another idea is to minimize the cost function

$$
C_{2}(\chi, \boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left\{-y_{i} \ln \left[g_{\boldsymbol{a}}\left(x_{i}\right)\right]-\left(1-y_{i}\right) \ln \left[1-g_{\boldsymbol{a}}\left(x_{i}\right)\right]\right\}
$$

with respect to \boldsymbol{a}. By considering samples from the class ω_{1} (such that $y_{i}=0$), analyze the value of the i th term of the cost function when $g_{\boldsymbol{a}}\left(x_{i}\right)$ is close to 1 or close to 0 and explain why this cost function is appropriate. Calculate the gradient of this cost function and show that the steepest descent rule can be expressed as

$$
a_{1}^{n+1}=a_{1}^{n}-\frac{\mu}{n} \sum_{i=1}^{n}\left[g_{a}\left(x_{i}\right)-y_{i}\right] x_{i}, \text { and } a_{2}^{n+1}=a_{2}^{n}-\frac{\mu}{n} \sum_{i=1}^{n}\left[g_{a}\left(x_{i}\right)-y_{i}\right]
$$

Response: We can guess that the first cost function $C_{1}(\chi, \boldsymbol{a})$ is non-convex and thus not appropriate for its minimization. Let's analyze the second cost function $C_{2}(\chi, \boldsymbol{a})$. When $y_{i}=1$, the i th term of this cost function reduces to $-\ln \left[g_{\boldsymbol{a}}\left(x_{i}\right)\right]$, which equals 0 when $g_{\boldsymbol{a}}\left(x_{i}\right)$ is close to 1 and tends to $+\infty$ when $g_{\boldsymbol{a}}\left(x_{i}\right)$ tends to 0 . When $y_{i}=0$, the i th term of the cost function reduces to $-\ln \left[1-g_{\boldsymbol{a}}\left(x_{i}\right)\right]$, which equals 0 when $g_{\boldsymbol{a}}\left(x_{i}\right)=0$ and tends to $+\infty$ when $g_{\boldsymbol{a}}\left(x_{i}\right)$ tends to 1 . As a consequence, minimizing the cost function $C_{2}(\chi, \boldsymbol{a})$ will provide a classifier trying to minimize the classification errors, which is precisely what we want.

The gradient of the cost function $C_{2}(x, \boldsymbol{a})$ is defined as

$$
\frac{\partial C_{2}(\chi, \boldsymbol{a})}{\partial \boldsymbol{a}}=\frac{1}{n} \sum_{i=1}^{n}\left\{-y_{i} \frac{1}{g_{\boldsymbol{a}}\left(x_{i}\right)} \frac{\partial g_{\boldsymbol{a}}\left(x_{i}\right)}{\partial \boldsymbol{a}}+\left(1-y_{i}\right) \frac{1}{1-g_{\boldsymbol{a}}\left(x_{i}\right)} \frac{\partial g_{\boldsymbol{a}}\left(x_{i}\right)}{\partial \boldsymbol{a}}\right\}
$$

Straightforward computations lead to

$$
a_{1}^{n+1}=a_{1}^{n}-\frac{\mu}{n} \sum_{i=1}^{n}\left[g_{\boldsymbol{a}}\left(x_{i}\right)-y_{i}\right] x_{i}, \text { and } a_{2}^{n+1}=a_{2}^{n}-\frac{\mu}{n} \sum_{i=1}^{n}\left[g_{\boldsymbol{a}}\left(x_{i}\right)-y_{i}\right]
$$

Questions related to the working paper

Remark: please make sure to justify all your responses very carefully.

1. (1 pt) Explain why higher-order statistics (HOS) are resistant to additive colored Gaussian noise Response: the cumulants of orders higher than 2 of a Gaussian sequence are equal to zero. Thus, if the noise $g(n)$ and the signal of interest $x(n)$ are independent, the cumulants of the signal plus noise (received signal $y(n)=x(n)+g(n)$) are equal to the cumulants of the signal plus the cumulants of the noise, i.e., $C_{k, y}=C_{k, x}+C_{k, g}$. When the noise $g(n)$ is Gaussian, its cumulants of order higher than 2 are zero, i.e., $C_{k, g}=0$ for $k>2$, which proves that the cumulants of order $k \geq 3$ of the received signal are equal to the cumulants of the noiseless signal of interest. In other words, $C_{k, y}=C_{k, x}$, for $k \geq 3$, showing a kind of non-sensivity to an additive Gaussian noise $g(n)$. This is what the authors mean by "resistant to additive Gaussian noise".
2. (1 pt) Express the 4 th order cumulant C_{40} of the signal $y(n)$ as a function of $E\left[y^{4}(n)\right.$ and $E\left[y^{2}(n)\right]$. Response: Using (4), we obtain

$$
C_{40}=E\left[y^{4}(n)\right]-3 E^{2}\left[y^{2}(n)\right]
$$

3. (1 pt). What is a BPSK constellation? Demonstrate that $C_{40}=-2$ for this constellation.

Response: A BPSK constellation corresponds to the two equiprobable symbols $s_{1}=1$ and $s_{2}=$ -1 . For this constellation, we have $y^{2}(n)=y^{4}(n)=1$, hence $C_{40}=1-3=-2$.
4. (1 pt). What is a PAM(4) constellation? Demonstrate that $C_{40}=-1.36$ for this constellation.

Response: A PAM(4) constellation corresponds to the four equiprobable symbols $s_{1}=a, s_{2}=$ $-a, s_{3}=3 a$ and $s_{4}=-3 a$. For this constellation, we have $y^{2}(n)=a^{2}$ with probability $1 / 2$ and $y^{2}(n)=9 a^{2}$ with probability $1 / 2$. Thus, $E\left[y^{2}(n)\right]=5 a^{2}$. Similarly, $y^{4}(n)=a^{4}$ with probability $1 / 2$ and $y^{4}(n)=81 a^{4}$ with probability $1 / 2$. Thus, $E\left[y^{4}(n)\right]=41 a^{4}$ hence $C_{40}=$ $41 a^{4}-3\left(25 a^{4}\right)=-34 a^{4}$. It is mentioned in the paper that $C_{21}=E\left[y^{2}(n)\right]=5 a^{2}=1$, which leads to $a=1 / \sqrt{5}$, leading to $C_{40}=-34 / 25=-1.36$.
5. (1 pt) Explain why C_{42} is unaffected by a (deterministic) phase rotation.

Response: We have

$$
C_{42}=\operatorname{cum}\left[y(n), y(n), y^{*}(n), y^{*}(n)\right]=E\left[|y(n)|^{4}\right]-2 E^{2}\left[|y(n)|^{2}\right]-E\left[y^{2}(n)\right] E\left[\left(y^{*}(n)\right)^{2}\right]
$$

When $y(n)$ is multiplied by $e^{j \phi}$, the two first terms $E\left[|y(n)|^{4}\right]$ and $E^{2}\left[|y(n)|^{2}\right]$ are unchanged since $\left|y(n) e^{j \phi}\right|=|y(n)|$. When $y(n)$ is multiplied by $e^{j \phi}$, the last term equals

$$
E\left[y^{2}(n) e^{2 j \phi}\right] E\left[\left(y^{*}(n)\right)^{2} e^{-2 j \phi}\right]=E\left[y^{2}(n)\right] E\left[\left(y^{*}(n)\right)^{2}\right]
$$

which does not depend on ϕ. As a consequence, C_{42} is unaffected by a deterministic phase rotation.
6. (1 pt) ? Demonstrate Eq. (15).

Response: for equiprobable hypotheses H_{0} and H_{1}, the Bayesian classifier accepts H_{0} if

$$
\frac{1}{\sigma_{0}} \exp \left\{-\frac{\left(S-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right\}>\frac{1}{\sigma_{1}} \exp \left\{-\frac{\left(S-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\}
$$

or equivalently if

$$
\ln \left(\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)+\frac{\left(S-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(S-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}>0
$$

This inequality can be re-written

$$
\frac{\left(S-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(S-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}+\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}<\ln \left(\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)+\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}
$$

or

$$
\frac{\sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\left[\frac{\left(S-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(S-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}+\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\right]<\frac{\sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\left[\ln \left(\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)+\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\right]
$$

Using straightforward computations, we can show that this inequality can be written

$$
(S-\mu)^{2}<a^{2}
$$

with

$$
a^{2}=\frac{\sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\left[\ln \left(\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)+\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\right] \quad \text { and } \quad \mu=\left(\frac{\mu_{0}}{\sigma_{0}^{2}}-\frac{\mu_{1}}{\sigma_{1}^{2}}\right) \frac{\sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}
$$

which proves (15).
7. (1 pt) Explain where the decision rule (18) comes from.

Response: Suppose that we want to use C_{40} for the classification of $\operatorname{PSK}(8), \mathrm{QAM}(4,4), \operatorname{PAM}(4)$ and BPSK constellations. We have $C_{40}=0$ for $\operatorname{PSK}(8), C_{40}=-0.68$ for $\operatorname{QAM}(4,4), C_{40}=$ -1.36 for $\operatorname{PAM}(4)$ and $C_{40}=-2$ for BPSK, which leads to the following rule

$$
\begin{align*}
& \text { BPSK if } C_{40}<\frac{-2-1.36}{2}=-1.68 \tag{2}\\
& \operatorname{PAM}(4) \text { if }-1.68<C_{40}<\frac{-1.36-0.68}{2}=-1.02 \tag{3}\\
& \operatorname{QAM}(4,4) \text { if }-1.02<C_{40}<\frac{-0.68}{2}=-0.34 \tag{4}\\
& \operatorname{PSK}(8) \text { if } C_{40}>-0.34 \tag{5}
\end{align*}
$$

This rule is equivalent to (18).
8. (1 pt) In Example 3, explain why the pdf $f(g)=(1-\epsilon) f_{N}(g)+\epsilon f_{I}(g)$ corresponds to the presence of outliers in the data. What is the outlier probability for this pdf?
Response: This pdf corresponds to a percentage of $1-\epsilon$ noise samples distributed according to a zero mean Gaussian distribution with variance σ_{N}^{2} and a percentage of ϵ noise samples distributed according to a zero mean Gaussian distribution with variance $\sigma_{I}^{2}=100 \sigma_{N}^{2}$. The samples associated with the $\mathcal{N}\left(0, \sigma_{I}^{2}\right)$ distribution are the outliers. There is a probability of ϵ to have an outlier in the data.
9. (1 pt) In Example 7, explain why the presence of frequency offset generates symbol points that are smeared along arcs.
Response: The presence of frequency offset is modeled by the term $\exp \left(j 2 \pi n f_{0} T\right)$. For $n=1$, the first symbol is rotated by a factor $\exp \left(j 2 \pi f_{0} T\right)$. For $n=2$, the second symbol is rotated by a factor $\exp \left(j 4 \pi f_{0} T\right)$ etc... As consequence, the received symbols belong to arcs defined by $s_{n} \exp \left(j 2 \pi n f_{0} T\right)$.
10. (1pt) In Example 13, where does the statistics $q_{\text {LLR }}$ comes from?.

Response: If we consult one of the references such as [19], we can see that $q_{\text {LLR }}$ is an approximation of the likelihood ratio test statistics for distinguishing BPSK from $\operatorname{MPSK}(\mathrm{M})$ with $M \geq 4$.
11. (1pt) What kind of methods do the authors recommend when the observed data are drawn from an unknown symbol set?
Response: The authors mention in their conclusion that hierarchical agglomerative clustering algorithms (as those based on dendograms that have been studied in this course) could be used for these cases.

