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Exercice 1 : Bayesian Classifier

We consider a classification problem with two equiprobable classes ω1 and ω2 whose densities are

f(x|ωi) =
1
πb

1 +
(
x−ai
b

)2 , x ∈ R, i ∈ {1, 2} (1)

with b > 0 and a2 > a1.

1. Derive the Bayesian classification rule associated with this problem.
Response : Since the classes are equiprobable, the Bayesian classifier accepts the class ω1 if

f(x|ω1) ≥ f(x|ω2)

or equivalently

1 +

(
x− a1
b

)2

≤ 1 +

(
x− a2
b

)2

⇔ 2x(a1 − a2) ≤ a22 − a21.

Since a2 > a1, the class ω1 is accepted if

x ≤ S(a1, a2) =
a1 + a2

2
.

2. Express the error probability of the Bayesian classifier as functions of a2− a1 and b. Compute the
limit of this probability when a2 − a1 tends to +∞ and explain this result. Same question when b
tends to +∞.
Response : The error probability of the previous Bayesian classifier can be computed as follows

Pe =

∫ +∞

S(a1,a2)
f(x|ω1)P (ω1)dx+

∫ S(a1,a2)

−∞
f(x|ω2)P (ω2)dx.

After replacing the densities f(x|ω1) and f(x|ω2) by their expressions and making standard
changes of variables, the following result is obtained

Pe =

∫ +∞

T (a1,a2)

1

2π

1

1 + u2
du+

∫ −T (a1,a2)
−∞

1

2π

1

1 + u2
du.

with T (a1, a2) = a2−a1
2b . The two integrals defying Pe are equal by symmetry and can be com-

puted easily. One finally obtains

Pe =
1

2
− 1

π
arctan

(
a2 − a1

2b

)
.

The error probability tends to 0 when a2 − a1 tend to +∞ or when b tends to 0. It is a decreasing
function of a2−a12b which can be considered as a kind of of signal to noise ratio for the classification
problem.
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Exercice 2: Neural Network

We consider a classification problem with two classes ω1 and ω2 and the training samples x1 = (1, 1)T ,
x2 = (−1,−1)T , x3 = (1,−1)T and x4 = (−1, 1)T . We know that x1 and x2 are associated with class
ω1 whereas x3 and x4 are associated with class ω2.

1. We build a neural network with one hidden layer with two nodes and one output y such that y = 1
if x belongs to the dark gray area displayed in the figure below and y = 0 else. All non-linearities
used in this neural network are Heaviside functions such that fs(u) = 1 if u > 0 and fs(u) = 0
else. We also assume that the output of node 1 of the first layer is equal to 1 when x falls on one
side of one of the two straight lines delimiting the dark gray area (the side corresponding to the
region inside the dark gray area) and is equal to 0 else. The output of node 2 is defined similarly
with the other straight line delimiting the dark gray area. Provide the values of the different weights
of this neural net which is displayed in the second figure below.

Exercice 2 : Réseau de neurones pour problème XOR

On considère la base d’apprentissage suivante associée à un problème de classification à deux
classes

"1 = {(1> 1) ; (�1>�1)} et "2 = {(1>�1) ; (�1> 1)}

1) Construire un réseau de neurones avec des non-linéarités ”dures” (i({) = 1 si { A 0 et
i({) = 0 si { ? 0)permettant d’obtenir g ({) = 1 si { = ({1> {2)

W appartient à la zone hachurée et
g({) = 0 sinon. On choisira avec soin le nombre de couches, le nombre de noeuds par couches et les
divers poids associés aux diverses connections.

1-1

1

-1

2) On considère le réseau de neurones suivant

x1

x2

1 a

y

f

f

f

w11

w12

w22

w21

1 b

v1

v2

1
c

où z = (z11> z12> z21> z22)
W est le vecteur des poids de la première couche, y = (y1> y2)

W est le
vecteur des poids de la seconde couche, { = ({1> {2)

W est le vecteur d’entrée du réseau, | est la
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Response : The dark gray area is delimited by the two lines of equations

x1 + x2 +
1

2
= 0 and x1 + x2 −

3

2
= 0.
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More precisely, it is defined by

x1 + x2 +
1

2
> 0 and − x1 − x2 +

3

2
> 0.

These two equation can be rewritten as

w11x1 + w21x2 − a > 0 w12x1 + w22x2 − b > 0

with w11 = w21 = 1, w12 = w22 = −1, a = −1
2 and b = −3

2 . The two straight lines defined
before can be generated by adjusting the weights of the two first nodes with a non-linearity provid-
ing 0 is the input is negative and 1 if the input is positive. If we denote the outputs of the two first
nodes as y1 and y2, the node of the last layer has to perform an “and” operation. This operation
can be obtained as follows

y = f(v1y1 + v2y2 − c)

with v1 = v2 = 1 and c ∈]1, 2[, (e.g., c = 3
2 ).

2. The neural net investigated in the first question is displayed in the figure below, where w =
(w11, w12, w22, w22)

T is the weight vector of the first layer with offsets a and b, and v = (v1, v2)
T

is the weight vector of the output with offset c. We recall the following relations

y1 = f(w11, x1 + w21x2 − a), y2 = f(w12, x1 + w22x2 − b) and y = f(v1y1 + v2y2 − c).

where we assume f(t) = exp(αt)
1+exp(αt) .What are the back propagation update rules associated with

this neural net?
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W appartient à la zone hachurée et
g({) = 0 sinon. On choisira avec soin le nombre de couches, le nombre de noeuds par couches et les
divers poids associés aux diverses connections.

1-1

1

-1

2) On considère le réseau de neurones suivant

x1

x2

1 a

y

f

f

f

w11

w12

w22

w21

1 b

v1

v2

1
c
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Response : we know that f ′(x) = αf(x)[1 − f(x)]. The gradient rule for the weights vi can be
written

vi(n+ 1) = vi(n)− µ ∂e2(n)

∂vi

∣∣∣∣
vi=vi(n)

for i = 1, 2. Using

e2(n) = [d(n)− y(n)]2 = [d(n)− f(v1y1(n) + v2y2(n)− c)]2

we obtain
∂e2(n)

∂vi
= −2e(n)

∂e(n)

∂vi
= −2αe(n)yi(n)y(n)[1− y(n)]
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hence
vi(n+ 1) = vi(n) + δe(n)yi(n)y(n)[1− y(n)], i = 1, 2.

Similarly, the update of the offset parameter c is

c(n+ 1) = c(n) + δce(n)y(n)[1− y(n)].

Using the definitions of y1 and y2

y1 = f(w11x1 + w21x2 − a) and y2 = f(w12x1 + w22x2 − b)

we obtain

∂y(n)

∂w11
= α2y(n)[1− y(n)]v1(n)x1(n)y1(n)[1− y1(n)]

∂y(n)

∂w21
= α2y(n)[1− y(n)]v1(n)x2(n)y1(n)[1− y1(n)]

∂y(n)

∂w12
= α2y(n)[1− y(n)]v2(n)x1(n)y2(n)[1− y2(n)]

∂y(n)

∂w21
= α2y(n)[1− y(n)]v2(n)x2(n)y2(n)[1− y2(n)]

or equivalently
∂y(n)

∂wij
= α2y(n)[1− y(n)]vj(n)xi(n)yj(n)[1− yj(n)].

Similarly, the partial derivatives of y(n) with respect to the the offsets are

∂y(n)

∂a
= α2y(n)[1− y(n)]v1(n)(−1)y1(n)[1− y1(n)]

∂y(n)

∂b
= α2y(n)[1− y(n)]v2(n)(−1)y2(n)[1− y2(n)].

Finally, the updating rules for the weight wij and the offsets a and b are

wij(n+ 1) = wij(n) + δije(n)
∂y(n)

∂wij

∣∣∣∣
wij=wij(n)

, i, j = 1, 2.

a(n+ 1) = a(n) + δae(n)
∂y(n)

∂a

∣∣∣∣
a=a(n)

,

b(n+ 1) = b(n) + δbe(n)
∂y(n)

∂b

∣∣∣∣
b=b(n)

.

Questions related to the working paper

1. What are the advantages of hyperspectral sensors with respect to multispectral sensors?
Response : Hyperspectral sensors have a higher spectral resolution since they provide measure-
ments acquired in hundreds of observation channels.

2. Explain what the authors mean by the “curse of dimensionality” (Second column of page 1778).
Response : when the dimensionality of the problem (size of the vector to classify) is too large,
we need a training set with a lot of examples to obtain a reasonable classification performance. In
practical applications, it is often difficult to acquire all these examples and thus we need to map
the data into a lower dimensional subspace. Methods that can be used for this mapping include the
principal component analysis or the linear discriminant analysis.
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3. Explain the differences between supervised and unsupervised classification rules.
Response : supervised rules are used when the number of classes is known and when some exam-
ples associated with each class (training samples) are available. Conversely, unsupervised classifi-
cation rules aim at separating the data into different clusters without having a training set.

4. Explain the principles of the basic sequential forward selection (SFS) (mentioned in the first col-
umn of page 1779) and an example of feature selection criterion that can be used for the SFS
method.
Response : the basic SFS algorithm selects features sequentially in order to obtain maximize an
appropriate cost function C. A classical choice of cost function is C = 1−Pe, where Pe is the er-
ror probability of the classifier. In this case, we begin by choosing the feature f1 which minimizes
Pe. After determining this feature, we compute the feature f2 such that the pair (f1, f2) minimizes
Pe, and so on.

5. How can we obtain Eq. (5) from (4)?
Response : see course on support vector machines

6. What is the leave-one-out (LOO) rule mentioned in the first column of page 1782?
Response : The leave-one-out (LOO) rule is a rule for computing the error probability of a clas-
sifier. Assume that n samples are available in a database. The LOO rule leaves one sample out
of this database for testing and uses the n − 1 remaining sample for training. This operation is
repeated n times and the error probability of the classifier is computed by counting the number of
errors obtained during these n operations.

7. Provide the mathematical expressions of the discriminant functions used for the one-against-all
(OAA) rule mentioned after Eq. (16)?
Response : the discriminant functions used for the one-against-all (OAA) rule are defined as
fk(x) = yi(wk . x + bk), where wk and bk define the separating hyperplane for the kth sup-
port vector machine.

8. What are the minimum and maximum value of the score function Si(x)? When do we obtain these
minimum and maximum values?
Response : The maximum value of the score function is Si(x) = T − 1, which is obtained when
the class ωi has been preferred to all other classes ωj , for j 6= i. The minimum value of the score
function is Si(x) = −(T − 1), which is obtained when the class ωi has never been preferred to
another class ωj , for j 6= i.

9. Explain how the tree of Fig. 6 (a) has been obtained and how a vector x is classified using this
tree.
Response : in order to build the tree of Fig. 6 (a), we first need to build two groups of classes
Ω0
A,0 and Ω0

B,0 having similar prior probabilities using the class priors P (ωi) = ni
n (where ni is

the number of training samples of the ith class and n =
∑

i ni) . By using the numbers of samples
indicated in Table I, we obtain P (Ω0

A,0) = P (ω1) +P (ω2) +P (ω7) = 0.51 and P (Ω0
B,0) = 0.49.

We run an SVM classifier for these two groups of classes denoted as SVM 1 which separates the
two groups into two sets of samples. The procedure is repeated for each output of the classifier
SVM 1. For instance, in the right branch of the tree, one group is formed of class 7 (with prior
close to 0.27) and the other group is formed of the two classes ω1 and ω2 (with prior close to 0.25).
The procedure stops when a leaf of the tree contains a unique class. In order to classify the vector
x, we run the different SVM classifiers sequentially with x as an input and we stop when x is
assigned to a leaf corresponding to a given class.

10. Explain how the tree of Fig. 6 (b) has been obtained. In particular, justify the order of the different
classes (i.e., ω7 first, ω1 second, ...) and explain how a vector x is classified using this tree.
Response : the tree of Fig. 6 (b) is obtained by running different SVM classifiers. Each classifier
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is built from two groups of classes : the first group contains the most probable class (according to
its prior) and the second group contains the remaining classes. For instance, at the first step, class
ω7 which is the most likely is chosen for group A and the group B contains all other classes. At
the second step, class ω1 constitues group A since it has the maximum prior probability, etc... n
order to classify the vector x, we run the different SVM classifiers sequentially with x as an input
and we stop when x is assigned to a leaf corresponding to a given class.

11. Assume that we have n = 200 test samples (n0 = 100 from class ω0 and n1 = 100 from class ω1).
A classifier correctly classifies 70 samples from class ω0 (called true negatives) and 80 samples
from class ω1 (called true positives). What is the overall accuracy for this problem? (the overall
accuracy is indicated in Table V for the classification of hyperspectral pixels).
Response : the overall accuracy is the ratio between 1) the sum of true positives and true negatives
and 2) the total number of samples. For the problem considered above, we have OA = (70 +
80)/200 = 0.75.

12. How do the authors of this paper justify the poor performance of k-nearest neighbor rule for their
problem?
Response : it is mentioned p. 1786 that “the small number of training samples is not sufficient
to fill in a proper way the emptiness of the hyper dimensional feature space” which explains the
relatively poor classification accuracies of the K-nn classifier.
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