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Lecture notes and slides authorized

Exercice 1

We consider a classification problem with two classes ω1 and ω2 whose densities are

f(x|ω1) = 2xI]0,1[(x) and f(x|ω2) = 2(1− x)I]0,1[(x) (1)

where I]0,1[(x) is the indicator function on the interval ]0, 1[ (such that I(x) = 1 if x ∈]0, 1[ and I(x) = 0
if x /∈]0, 1[).

1. (3 pts) Derive the Bayesian classification rule associated with this problem when we use the 0− 1
cost function and when the two classes have the prior probabilities P (ω1) = 1/4 and P (ω2) =
3/4. How does this rule modify when the two classes are equiprobable? Explain this result.
Determine the probability of error in the equiprobable case.
Response : The Bayesian classifier accepts the class ω1 if

f(x|ω1)P (ω1) ≥ f(x|ω2)P (ω2)

or equivalently if, for x ∈]0, 1[
2x× 1

4
≥ 2(1− x)× 3

4
.

As a consequence, the class ω1 is accepted if

x ≥ 3

4
.

When the two classes are equiprobable, we have P (ω1) = P (ω2) = 1
2 . Thus, the Bayesian

classifier accepts the class ω1 if

2x× 1

2
≥ 2(1− x)× 1

2
⇔ x ≥ 1

2
.

In the equiprobable case, the error probability of the Bayesian classifier can be computed as follows

Pe =

∫ 1
2

0
f(x|ω1)P (ω1)dx+

∫ 1

1
2

f(x|ω2)P (ω2)dx.

i.e.,

Pe =

∫ 1
2

0
xdx+

∫ 1

1
2

(1− x)dx =
1

4
.

2. (3 pts) Assume that we have a learning set composed of two elements of class ω1 denoted as
x1 = 3/4 and x2 = 7/8 and two elements of class ω2 denoted as x3 = 1/8 and x4 = 3/8. What is
the classification rule associated with the nearest neighbor rule. The asymptotic error probability
of the nearest neighbor rule is known to be

P1 =

∫ +∞

−∞

[
1−

2∑
i=1

P 2(ωi|x)

]
f(x)dx.

1



Compute this error probability in the equiprobable case. Check that this result is in good agreement
with the Cover and Hart inequality.
Response : the 1 nearest neighbor rule assigns x to class ω1 if the nearest neighbor of x belongs to
class ω1. After displaying the different points in the interval ]0, 1[, it can be seen that the class ω1

is accepted if

x ≥ x∗ = x4 + x1
2

=
9

16
.

In order to compute the error probability of the 1-nearest neighbor rule, we need to determine
P (ω1|x), P (ω2|x) and f(x). In the equiprobable case, straightforward computations lead to

f(x) = f(x|ω1)P (ω1) + f(x|ω2)P (ω2) = 1

P (ω1|x) =
f(x|ω1)P (ω1)

f(x)
= x

P (ω2|x) =
f(x|ω2)P (ω2)

f(x)
= 1− x.

The asymptotic error probability of the nearest neighbor rule can then be computed as follows

P1 =

∫ +∞

−∞

[
1−

2∑
i=1

P 2(ωi|x)

]
f(x)dx =

∫ 1

0
[1− x2 − (1− x)2]dx =

1

3
.

Since K = 2, we have

Pe

(
2− K

K − 1
Pe

)
=

3

8
.

The double inequality of Cover and Hart

Pe =
1

4
≤ P1 =

1

3
≤ Pe

(
2− K

K − 1
Pe

)
=

3

8

is clearly satisfied.

3. (3 pts) We assume now that the probability density function f(x|ω1) is unknown and estimate it
using the following estimator

fn(x) =
1

nhn

n∑
i=1

φ

(
x− xi
hn

)
where x1, ..., xn are training samples from the class ω1 (i.e., distributed according to f(x|ω1)) and

φ(u) =

{
e−u if u > 0
0 sinon

Provide some motivations for the estimator fn(x) introduced above. Determine E[fn(x)] as a
function of x and hn. Determine also

lim
hn→0

E[fn(x)].

What can we conclude about the estimator fn(x)?
Response : the estimator fn(x) results from a direct application of the theory of Parzen windows.
Since the training samples xi are distributed according to f(x|ω1) = 2xI]0,1[(x), we have

E[fn(x)] =
1

nhn

n∑
i=1

E

[
φ

(
x− xi
hn

)]
=

1

nhn

n∑
i=1

∫ 1

0
2xiφ

(
x− xi
hn

)
dxi.
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Using the definition of φ, we have∫ 1

0
2xiφ

(
x− xi
hn

)
dxi =

∫ x

0
2xi exp

(
xi − x
hn

)
dxi = 2 exp

(
−x
hn

)
I

with

I =

∫ x

0
xi exp

(
xi
hn

)
dxi.

Integrating by parts leads to

I = hnx exp

(
x

hn

)
hence

E[fn(x)] = 2x− 2hn + 2hn exp

(
− x

hn

)
.

Finally, we obtain for x ∈]0, 1[

lim
hn→0

E[fn(x)] = 2x = f(x|ω1)

which shows that fn(x) is an asymptotically unbiased estimator of f(x|ω1) (asymptotically mean-
ing hn → 0).

4. (2 pts) Create by hand a dendrogram for the following 6 points in one dimension: x1 = −5.5,
x2 = −4.0, x3 = −3.0, x4 = 5.0, x5 = 6.1 and x6 = 7.3, when the distance between two clusters
Xi and Xj is defined as

d(Xi, Xj) = min
x∈Xi,y∈Xj

d(x, y)

Response: a similar example was processing during one of the lectures.

Questions related to the working paper

Remark: please make sure to justify all your responses very carefully.

1. (1 pt) Explain how we can classify a feature vector with the decision tree displayed in Fig. 8.1.
Response: for a given signal or image to classify, we first build a feature vector. In the example of
Fig. 8.1, this feature vector contains four components related to the taste, the color, the shape and
the size of the fruit. This feature vector is then propagated into the tree according to the different
decisions made at the leaves of the tree. For instance, the feature vector associated with a banana
will be (yellow,thin,medium,sweet). If we present this vector to the tree of Fig. 8, it will go in the
middle branch since it is yellow, then it will go in the right branch as it is thin and thus it will be
classified as a banana.

2. (0.5 pt) Does CART belong to the class of supervised or un-supervised classification methods?
Response: to build the classification tree, we need some labelled feature vectors. Thus CART
belongs to the family of supervised classification methods.

3. (1 pt) Can we always build a tree with binary decisions? Justify your response by means of an
example.
Response: if there are more than two decisions at a node of the tree, we can always replace these
decisions by a sub-tree with binary decisions. Consider for instance the node “size” at level 1 of the
tree displayed in Fig. 8.1. There are three decisions associated with this node: “big”, “medium”
and “small". These three decisions might be replaced by a two-level sub-tree asking first whereas
the fruit is “big” (decision #1) or “medium or small" (decision #2). Then the second decision can
be split into two part “medium” or “small”. This two-level sub-tree is clearly defined using binary
decisions only.
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4. (1 pt) Build a branch of a decision tree which leads to the decision region R1 displayed in the left
figure of Fig. 8.3.
Response: This branch can be obtained by the following steps

• Step 1: test whether x1 is larger or smaller than a given threshold (e.g., s1 = 1).

• Step 2: test whether x2 is larger or smaller than a given threshold (e.g., s2 = 1).

• Step 3: test whether x1 is larger or smaller than a given threshold (e.g., s3 = 2).

• Step 4: test whether x2 is larger or smaller than a given threshold (e.g., s4 = 1.5).

5. (1 pt) What is the value of the entropy i(N) defined in (1) for equally likely (equiprobable) classes?
for two classes with respective probabilities P (ω1) = 0 and P (ω2) = 1?
Response: if the two fractions of samples belonging to classes ω1 and ω2 are the same, we have
P (ω1) = 1/2 and P (ω2) = 1/2 leading to the maximum entropy i(N) = 1. For P (ω1) = 0 and
P (ω2) = 1, we obtain i(N) = 0.

6. (0.5 pt) Why might we prefer to use the Gini impurity index rather than the misclassification
impurity?
Response: the tree obtained with the Gini impurity is generally richer (more branches) and thus
can anticipate later splits that won’t be considered by the misclassification impurity.

7. (1 pt) Explain the term “cross-validation” (appearing page 11 of the paper).
Response: Cross-validation means that you divide your set of labelled samples into two parts, a
“training set" (containing for instance 90% of the data) and a “test set” (containing 10% of the
data). The training set is used to build the decision tree, i.e., to choose the decisions associated
with each branch of the tree. The “test set” is used to decide whether a node is a leaf node (terminal
node) or not, i.e., if we continue to split a given node into two parts, or not.

8. (2 pts) As explained in the paper, we can use hypothesis testing to decide whether we have to stop
the growing of a tree at a given node. Explain how this strategy is working. What is the distribution
of χ2 defined in (9)? Provide a mathematical expression of the test threshold as a function of the
confidence level α (probability if false alarm of the test) and the inverse cumulative distribution
function of χ2.
Response: Assume that we have samples belonging to classes ω1 and ω2 at a given node of the tree
(n1 samples in ω1 and n2 samples in ω2). Consider a given split s, which sends Pn pattern to the
left and (1− P )n patterns to the right (with n = n1 + n2). If this split differs significantly from a
random split, which would send (in average) Pn1 patterns to the left and (1−P )n2 patterns to the
right, we continue to split this node. In order to measure this kind of similarity measure, we use
the value of χ2 defined in (9). The distribution of χ2 is a chi-square distribution with one degree
of freedom under hypothesis H0 (random split). If χ2 is less than a given threshold, we accept
the hypothesis H0 and do not split the node. Conversely, if χ2 is larger than a given threshold, we
accept the hypothesis H1 and we split the node. If F denotes the cumulative distribution function
of the chi-square distribution with one degree of freedom, the test threshold can be determined
from the probability of false alarm of the test

α = PFA = P [χ2 < Sα|H0 true] = F (Sα)

hence
Sα = F−1(α).

9. (1 pt) Explain how the first threshold 0.6 has been obtained in the top right tree of Example 1.
Response: In order to determine this threshold, we have to test all possible values of thresholds t
for splitting the data from the two sides of a vertical line (defined by x1 = t) and from the two
sides of an horizontal line (defined by x2 = t). The split which provides the largest impurity (here
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entropy) is determined. If this threshold does not validate the stopping criterion, the data are split
according to this threshold. In example 1, the largest impurity was obtained for a vertical line of
equation x1 = t with t ∈]0.57, 0.70[. The value t = 0.6 is an example of solution.

10. (1pt) Explain “Preprocessing by principal components can be effective” in Section 3.7.1. In par-
ticular, explain how these principal components can be computed.
Response: The aim of principal component analysis is to project the data into a lower dimensional
sub-space which represents the data with good accuracy. Thus it makes sense to use these pro-
jections (instead of the features) to feed the tree. The principal components are defined by the
eigenvectors associated with the largest eigenvalues of the data covariance matrix.
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