Anomaly Detection

Jean-Yves Tourneret⁽¹⁾ et Axel Carlier ⁽²⁾

(1) University of Toulouse, ENSEEIHT-IRIT-TéSA, jyt@n7.fr (2) University of Toulouse, ENSEEIHT-IRIT, Axel.Carlier@toulouse-inp.fr

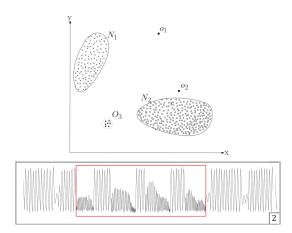
 $\mathsf{May}\ 2023$

Summary

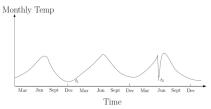
Anomaly detection

- Classes of anomalies
- Algorithms
 - ► Distance-based algorithms
 - ► LoOF and LOOP
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ► Isolation Forests
 - Reconstruction-based algorithms
 - Subspace-based methods
 - ► Neural network-based approaches
 - Online anomaly detection

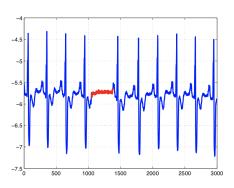
Ponctual Anomalies



Contextual Anomalies



Collective Anomalies



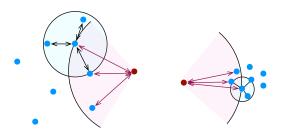
Summary

Anomaly detection

- ► Classes of anomalies
- Algorithms
 - ► Distance-based algorithms
 - ► LoOF and LOOP
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Subspace-based methods
 - Neural network-based approaches
 - Online anomaly detection

Local Outlier Factor (LOF) [Breunig, 2000]

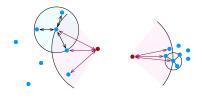
General principle of k-NN methods: anomalies are far from nominal data and in areas where there are few nominal data



▶ LOF is based on a "local density" in the neighborhood of each point

$$\mu(\boldsymbol{x}_i) = \left(\frac{1}{|\mathcal{N}_k(\boldsymbol{x}_i)|} \sum_{\boldsymbol{x}_j \in \mathcal{N}_k(\boldsymbol{x}_i)} d_k(\boldsymbol{x}_i, \boldsymbol{x}_j)\right)^{-1}, \quad \mathcal{N}_k(\boldsymbol{x}_i) \colon k\text{-NN of } \boldsymbol{x}_i$$

Local Outlier Factor



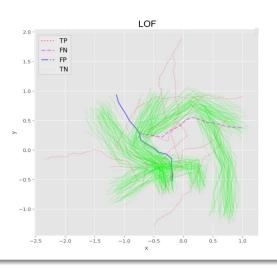
If the local density of a test point is close to the density of its neighbors, this point is declared as "normal".

Probabilistic Local Outlier Factor

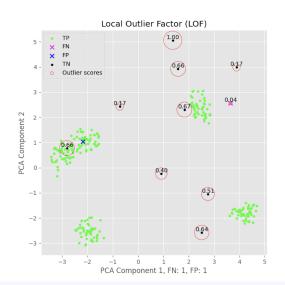
$$\mathsf{PLOF}_k(\boldsymbol{x}_i) = \frac{\mu(\boldsymbol{x}_i)}{\frac{1}{|\mathcal{N}_k(\boldsymbol{x}_i)|} \sum_{\boldsymbol{x}_j \in \mathcal{N}_k(\boldsymbol{x}_i)} \mu(\boldsymbol{x}_j)}$$

If x_i is in a homogeneous area $\mathsf{LOF}_k(x_i) pprox 1$, else $\mathsf{PLOF}_k(x_i)$ is "large".

LOF for Maritime Surveillance (k = 9, Contamination = 10/260)



LOF for Maritime Surveillance (k = 9, Contamination = 10/260)



Local Outlier Probabilities (LoOP) [Kriegel, 2009]

▶ LoOP reformulates LOF in a probabilistic context by normalizing $PLOF_k(x_i)$ and deriving an anomaly score $\in]0,1[$ for each vector x_i :

 $\mathsf{LoOP}_k(oldsymbol{x}_i)$: probability that $oldsymbol{x}_i$ is an anomaly

- Parameters of LoOP
 - Number of nearest neighbors k: to be determined by cross validation.
 - lacktriangle One significance parameter λ ensuring that a point o is an outlier for S if

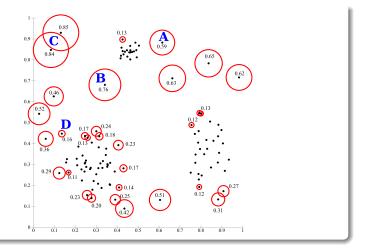
$$P[0 < d(o, s) < \lambda \sigma(o, S)] < \phi, \forall s \in S.$$

where $\sigma(o, S)$ is a kind of average distance between o and the elements of S:

$$\sigma(o, S) = \sqrt{\frac{\sum_{s \in S} d^2(o, s)}{|S|}}.$$

As examples, assuming that $\frac{d(o,s)}{\sigma(o,s)}$ is distributed according to a half $\mathcal{N}(0,1)$ distribution, we obtain $\lambda=3$ if $\phi=99.7\%$ and $\lambda=2$ if $\phi=95\%$.

Examples of anomaly probabilities (k = 20, $\lambda = 3$)



Summary

Anomaly detection

- ► Classes of anomalies
- Algorithms
 - ▶ Distance-based algorithms
 - ► LoOF and LOOP'
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Subspace-based methods
 - ► Neural network-based approaches
 - Online anomaly detection

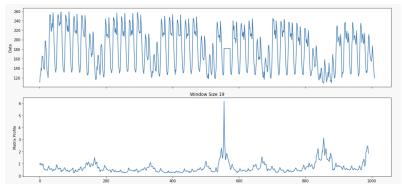
Discords [Keogh, 2005]

Non-Self Match: M is a non-self match of C at distance of $\operatorname{dist}(M,C)$ if M of length n begins at p, C of length n begins at q and $|p-q| \geq n$.

a b c a b c a b c a b c X X X a b c a b c a b a c a b c

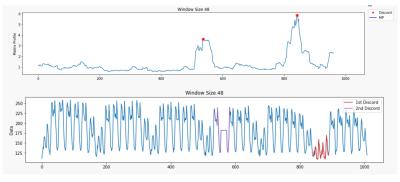
- ► Time Series Discord: Given a time series T, the subsequence D of length n beginning at position p is called the discord of T, if D has the largest distance to its nearest non-self match.
- **kth Time Series Discord**: Given a time series T, the subsequence D of length n beginning at position p is called the kth-discord of T if D has the kth largest distance to its nearest non-self match.

One discord



Discord for the hourly power electrical demand in an Italian city during 42 days (1008 hours) - n=19 hours (anomaly size), k=1 (https://matrixprofile.org/posts/what-are-time-series-discords/).

Two discords



Discord for the hourly power electrical demand in an Italian city during 42 days (1008 hours) - n=48 hours (anomalies that last 2 days), k=2 (https://matrixprofile.org/posts/what-are-time-series-discords/).

Summary

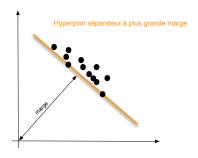
Anomaly detection

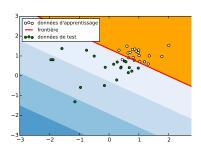
- ► Classes of anomalies
- Algorithms
 - ▶ Distance-based algorithms
 - ► LoOF and LOOP
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Subspace-based methods
 - ► Neural network-based approaches
 - Online anomaly detection

Linear One-Class-SVM method

- Find the hyperplane separating the training data $\mathcal{X} = \{x_1, ..., x_n\}$ from the origin and located as far as possible from the origin
- ▶ Distance between a point $x = (x, y)^T$ and a straight line \mathcal{D} of equation $\alpha x + \beta y \rho = 0$

$$d(\boldsymbol{x}, \mathcal{D}) = \frac{|\alpha \boldsymbol{x} + \beta \boldsymbol{y} - \rho|}{\sqrt{\alpha^2 + \beta^2}} = \frac{|\boldsymbol{w}^T \boldsymbol{x} - \rho|}{\|\boldsymbol{w}\|}$$





Linear One-Class-SVM method

▶ By noting that the margin is $d(\mathbf{0},\mathcal{D}) = \frac{\rho}{\|\mathbf{w}\|}$, we can solve the following optimization problem ("Soft-margin" SVM classifier)

minimize
$$\frac{1}{2} \left\| m{w} \right\|^2 + C \sum_{i=1}^n \xi_i$$
 with the constraints $m{w}^T m{x}_i \geq 1 - \xi_i, \; \xi_i \geq 0, \forall i$

or the ν -SVM formulation

$$\begin{aligned} & \text{Minimize } \frac{1}{2} \left\| \boldsymbol{w} \right\|^2 + \frac{1}{n\nu} \sum_{i=1}^n \xi_i - \rho \\ & \text{with the constraints } \boldsymbol{w}^T \boldsymbol{x}_i \geq \rho - \xi_i, \; \xi_i \geq 0, \forall i, \rho \geq 0 \end{aligned}$$

ensuring that the percentage of vectors violating the constraint ${\boldsymbol w}^T{\boldsymbol x}_i-\rho\geq 1$ is upper-bounded by ν and that the fraction of support vectors is lower bounded by ν .

Optimization

Kühn and Tucker multipliers

For a convex optimization problem (convex function f(x) to optimize and convex constraints $G_i(x) \leq 0$), an optimality condition is the existence of parameters $\alpha_i \geq 0$ such that the Lagrangian derivative is zero, i.e.,

$$L'(\boldsymbol{x}) = f'(\boldsymbol{x}) + \sum_{i=1}^{n} \alpha_i G'_i(\boldsymbol{x}) = 0$$

with $\alpha_i = 0$ if $G_i(\boldsymbol{x}) < 0$ (i.e., $\alpha_i G_i(\boldsymbol{x}) = 0$).

Optimization

Lagrangian

$$L\left(\widetilde{\boldsymbol{w}}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \rho\right) = \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} + \frac{1}{n\nu} \sum_{i=1}^{n} \xi_{i} - \rho - \sum_{i=1}^{n} \alpha_{i} \left(\boldsymbol{w}^{T} \boldsymbol{x}_{i} - \rho + \xi_{i}\right) - \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

Set to zero the partial derivatives of L with respect to the primal variables $\pmb{w},$ $\pmb{\xi}$ and ρ to zero yields

$$w = \sum_{i=1}^{n} \alpha_i x_i, \sum_{i=1}^{n} \alpha_i = 1$$
 and $\alpha_i = \frac{1}{n\nu} - \beta_i \le \frac{1}{n\nu}, \forall i$

Remark on support vectors

- ▶ Since $\alpha_i = \frac{1}{n\nu} \beta_i$, when $\beta_i = 0$, one has $\alpha_i = \frac{1}{n\nu}$ and x_i is a support vector
- ▶ When $\beta_i > 0$, one has $\xi_i = 0$. If $\alpha_i > 0$, one has $\boldsymbol{w}^T \boldsymbol{x}_i \rho = 0$, and \boldsymbol{x}_i is also a support vector

Dual problem

Solve
$$L'(\boldsymbol{x}) = 0$$

$$w = \sum_{\text{Support vectors}} \alpha_i x_i = x^T \alpha$$
 (1)

with
$$\boldsymbol{\alpha}=\left(\alpha_{1},...,\alpha_{n}\right)^{T}$$
, $\boldsymbol{x}=\left(x_{1},...,x_{n}\right)^{T}$ and

$$\left\{ \begin{array}{l} \alpha_i = 0 \text{ if the constraint is a strict inequality} \\ \alpha_i > 0 \text{ if the constraint is an equality} \end{array} \right.$$

After replacing the expression of $oldsymbol{w}$ in the Lagrangian, we obtain

$$U\left(\boldsymbol{\alpha}\right) = -\frac{1}{2}\boldsymbol{\alpha}^{T}\left(\boldsymbol{x}\boldsymbol{x}^{T}\right)\boldsymbol{\alpha}$$

that has to be maximized in the domain defined by $\sum_{i=1}^{n} \alpha_i = 1$ and $0 \le \alpha_i \le \frac{1}{n\nu}$.

Remarks

Simple optimization problem

- Quadratic (hence convex) function to optimize and linear constraints
- **Expression** of ρ : the constraints are equalities when $\alpha_i > 0$ and $\beta_i > 0$:

$$\rho = \boldsymbol{w}^T \boldsymbol{x}_i = \sum_{j=1}^n \alpha_j \boldsymbol{x}_j^T \boldsymbol{x}_i.$$

Classification rule for a vector x

$$f(\boldsymbol{x}) = \text{sign} \left(\sum_{\boldsymbol{x}_i \text{ support vectors}} \alpha_i \boldsymbol{x}_i^T \boldsymbol{x} - \rho \right)$$

where the summation is reduced to the support vectors.

- ν is a lower bound for the fraction of support vectors and an upper bound for the number of vectors lying outside the separating hyperplane
- ▶ Generalization to nonlinear separating curves using kernels straightforward

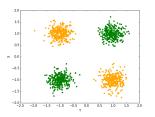
Non-linear SVM methods: example 1

- ▶ Two classes centered around $\{(1,1)^\top, (-1,-1)^\top\}$ and $\{(1,-1)^\top, (-1,1)^\top\}$.
- \blacktriangleright Training vectors are transformed using the application ϕ

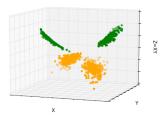
$$\phi: \qquad \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$\boldsymbol{x}_i = (x_{i,1}, x_{i,2})^\top \longmapsto \phi(\boldsymbol{x}_i) = (x_{i,1}, x_{i,2}, x_{i,1}x_{i,2})^\top$$

A linear separator $\boldsymbol{w} = (0,0,1)^{\top}$ in the transformed space can separate the data from the two classes



(c) Original data x_i (Class #1: orange, Classe #2: green).



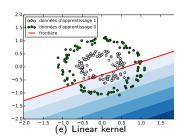
(d) Transformed data $\phi(\cdot)$

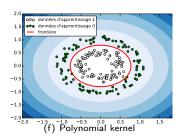
Non-linear SVM methods: example 2

- Two classes defined by two different rings
- \triangleright Polynomial transformation ϕ

$$\phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3} \mathbf{x}_{i} = (x_{i,1}, x_{i,2})^{\top} \longmapsto \phi(\mathbf{x}_{i}) = (x_{i,1}^{2}, x_{i,2}^{2}, \sqrt{2} x_{i,1} x_{i,2})^{\top}$$

A linear separator $w = (1, 1, 0)^{\top}$ in the transformed space corresponds to a "circular" separation in the original space.





Non-linear one-class SVM methods

For two data points x_i and x_j , we have

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle^2.$$

The one-class SVM only needs scalar products between the vectors $oldsymbol{x}_i$ to be computed!

 \blacktriangleright Transposition in the ϕ domain by replacing the scalar product by a kernel

$$\langle \boldsymbol{x}_i, \boldsymbol{x}_i \rangle \longrightarrow \kappa(\boldsymbol{x}_i, \boldsymbol{x}_i) = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_i) \rangle$$

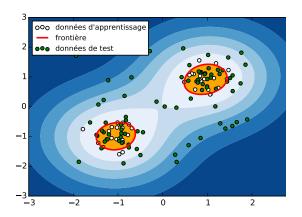
Thus, the transformed vectors $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$ do not need to be computed.

► Gaussian kernel

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}{2\sigma^2}\right).$$

For this example, one can show that the space spanned by $\phi(x)$ has infinite dimension.

Non-linear one-class SVM methods



Parameters for the one-class SVM method

Decision rule

$$f(x) = \operatorname{signe}\left(\sum_{i=1}^N lpha_i \kappa(oldsymbol{x}_i, oldsymbol{x}) -
ho
ight)$$

For the Gaussian kernel

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\gamma \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2\right). \tag{2}$$

Effect of the different parameters

- $ightharpoonup \gamma$ is related with the regularity of the separating curve
- ν allows the the percentage of outliers from the nominal class (located outside the separating curve) to be adjusted

Hyperparameter estimation

Hyperparameter ν

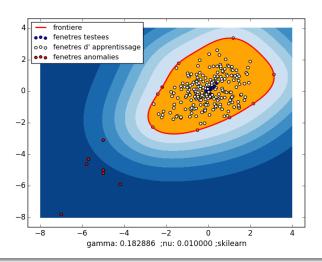
► Expert or cross validation

Hyperparameter γ

- ▶ Inverse of the number of descriptors (very adhoc)
- Cross validation
- "Trick (Jaakkola, Aggarwal, ...)": $\gamma = \frac{1}{2\sigma^2}$ with σ the median of the distances between nominal data
- ▶ More sophisticated methods are available in the literature

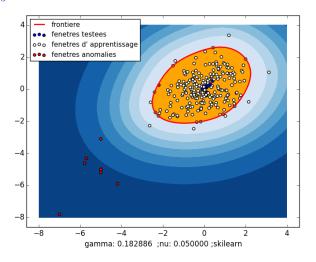
Effect of parameter ν ($\gamma = 0.18$)

$$\nu = 0.01$$



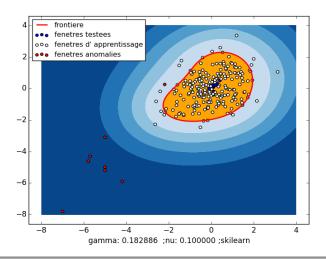
Effect of parameter ν ($\gamma = 0.18$)

$$\nu = 0.05$$

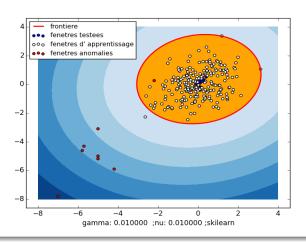


Effect of parameter ν ($\gamma = 0.18$)

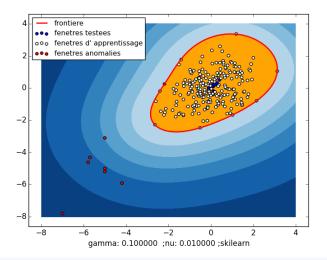
$$\nu = 0.1$$



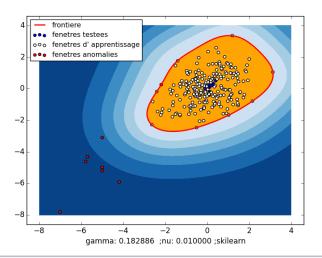
$$\gamma = 0.01$$



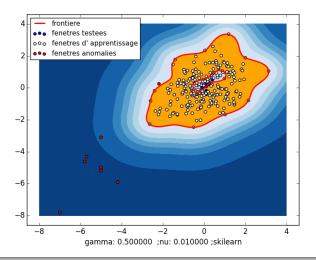
$$\gamma = 0.1$$



$$\gamma = 0.18$$
 (Jaakkola)

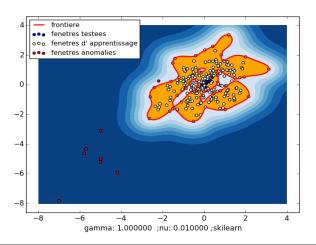


$$\gamma = 0.5$$

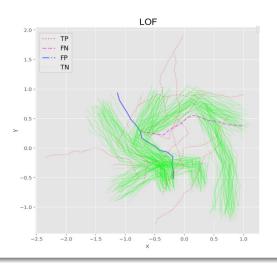


Effect of parameter γ ($\nu = 0.01$)

$$\gamma = 1$$

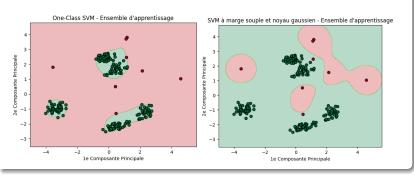


Detection of Abnormal Trajectories for Maritime Surveillance



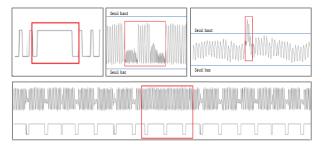
One-Class SVM versus SVM

- ▶ Left figure: one-class SVM with $\nu = 0.1$
- ▶ Right figure: supervised SVM with Gaussian kernel ($\gamma = 1$ and C = 1)



Application to the analysis of telemetry

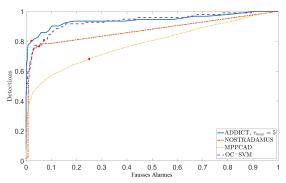
Thesis of B. Pilastre (Nov. 2020)



- ► Thousands of telemetry signals
- ▶ Discrete and continuous data
- Univariate and multivariate anomalies
- ▶ The out of limit (OOL) rule is simple but not efficient!

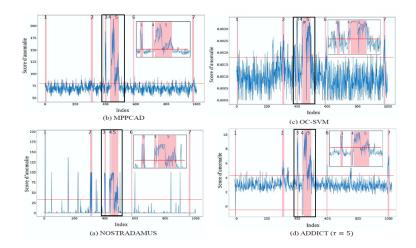
Application to the analysis of telemetry

Receiver operational characteristics



Method	Threshold	P_{D}	P_{FA}
OC-SVM	0.0018	80.85%	7%
MPPCAD	79.6	80%	13%
NOSTRADAMUS	29	77.26%	6%
ADDICT $(\tau_{\text{max}} = 5)$	4.2	80%	3%

Detected anomalies



Generalization to a semi-supervised scenario

Introduction of a user feedback

- ▶ Semi-supervised context: unlabelled data $\mathcal{X} = \{x_1,...,x_n\}$, labelled normal data $\mathcal{Y} = \{y_1,...,y_n\}$ and labelled anomalies $\mathcal{Z} = \{z_1,...,z_n\}$ (e.g., resulting from user feedback)
- One-class SVM with user feedback

$$\begin{split} \arg\min_{\boldsymbol{w},\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C_1 \sum_{i=1}^{n_1} \xi_i + C_2 \sum_{l=1}^{n_2} \zeta_l + C_3 \sum_{p=1}^{n_3} \tau_p \\ \text{s.t. } \boldsymbol{w}^T \Phi(\boldsymbol{x_i}) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \quad \text{unlabeled data} \\ \boldsymbol{w}^T \Phi(\boldsymbol{y_l}) \geq 1 - \zeta_l \text{ and } \zeta_l \geq 0 \quad \text{labeled normal} \\ \boldsymbol{w}^T \Phi(\boldsymbol{z_p}) \leq 1 + \tau_p \text{ and } \tau_p \geq 0 \quad \text{labeled anomalies} \end{split}$$

Generalization to a semi-supervised scenario

Introduction of a user feedback

- Semi-supervised context: unlabelled data $\mathcal{X} = \{x_1,...,x_n\}$, labelled normal data $\mathcal{Y} = \{y_1,...,y_n\}$ and labelled anomalies $\mathcal{Z} = \{z_1,...,z_n\}$ (e.g., resulting from user feedback)
- One-class SVM with user feedback

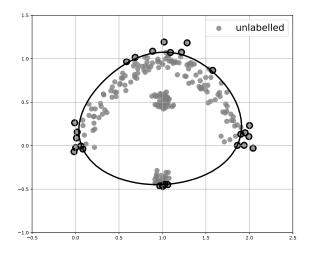
$$\begin{split} \arg\min_{\boldsymbol{w},\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C_1 \sum_{i=1}^{n_1} \xi_i + C_2 \sum_{l=1}^{n_2} \zeta_l + C_3 \sum_{p=1}^{n_3} \tau_p \\ \text{s.t. } \boldsymbol{w}^T \Phi(\boldsymbol{x}_i) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \quad \text{unlabeled data} \\ \boldsymbol{w}^T \Phi(\boldsymbol{y}_l) \geq 1 - \zeta_l \text{ and } \zeta_l \geq 0 \quad \text{labeled normal} \\ \boldsymbol{w}^T \Phi(\boldsymbol{z}_p) \leq 1 + \tau_p \text{ and } \tau_p \geq 0 \quad \text{labeled anomalies} \end{split}$$

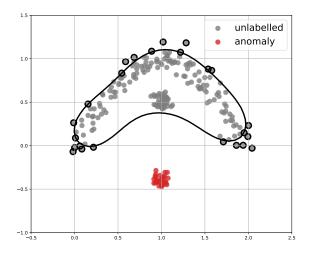
Generalization to a semi-supervised scenario

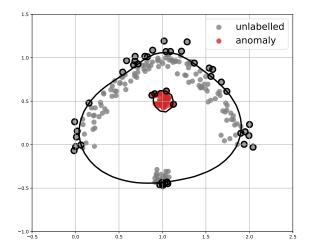
Introduction of a user feedback

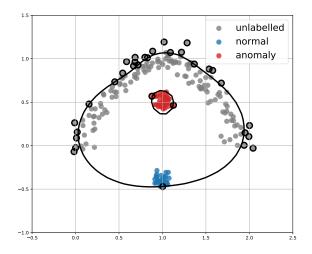
- ▶ Semi-supervised context: unlabelled data $\mathcal{X} = \{x_1,...,x_n\}$, labelled normal data $\mathcal{Y} = \{y_1,...,y_n\}$ and labelled anomalies $\mathcal{Z} = \{z_1,...,z_n\}$ (e.g., resulting from user feedback)
- One-class SVM with user feedback

$$\begin{split} \arg\min_{\boldsymbol{w},\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C_1 \sum_{i=1}^{n_1} \xi_i + C_2 \sum_{l=1}^{n_2} \zeta_l + C_3 \sum_{p=1}^{n_3} \tau_p \\ \text{s.t. } \boldsymbol{w}^T \Phi(\boldsymbol{x}_i) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \quad \text{unlabeled data} \\ \boldsymbol{w}^T \Phi(\boldsymbol{y}_l) \geq 1 - \zeta_l \text{ and } \zeta_l \geq 0 \quad \text{labeled normal} \\ \boldsymbol{w}^T \Phi(\boldsymbol{z}_p) \leq 1 + \tau_p \text{ and } \tau_p \geq 0 \quad \text{labeled anomalies} \end{split}$$









Support Vector Data Description (Tax and Duin, 1999)

Find a sphere of center c and radius R that encloses most of the data objects.

Optimization problem

minimize
$$R^2 + C\sum_{i=1}^n \xi_i$$
 with the constraints $(\boldsymbol{x}_i - \boldsymbol{c})^T (\boldsymbol{x}_i - \boldsymbol{c}) \leq R^2 + \xi_i \; \xi_i \geq 0, \forall i$

Optimization

Lagrangian

$$L(R, \boldsymbol{c}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = R^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[R^2 + \xi_i - (\boldsymbol{x}_i - \boldsymbol{c})^T (\boldsymbol{x}_i - \boldsymbol{c}) \right] - \sum_{i=1}^n \beta_i \xi_i$$

Set to zero the partial derivatives of L with respect to the primal variables $\boldsymbol{c},~R$ and $\boldsymbol{\xi}$ yields

$$c = \sum_{i=1}^{n} \alpha_i x_i, \sum_{i=1}^{n} \alpha_i = 1$$
 and $\alpha_i = C - \beta_i \le C, \forall i$

Dual problem

After replacing the expression of c in the Lagrangian, we obtain

$$U(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$$

that has to be maximized in the domain defined by $\sum_{i=1}^{n} \alpha_i = 1$ and $0 \le \alpha_i \le C$.

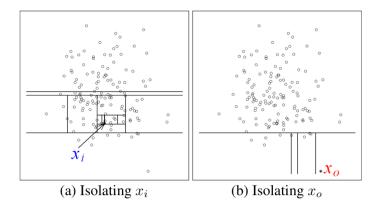
Summary

Anomaly detection

- Classes of anomalies
- Algorithms
 - ▶ Distance-based algorithms
 - ► LoOF and LOOP
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ► Isolation Forest
 - ▶ Reconstruction-based algorithms
 - Online anomaly detection

Principle of isolation forests [Liu, 2008]

► Isolate each point by a random partitioning: an anomaly will be isolated faster than a nominal point



How to built random trees?

Initial strategy proposed in the paper by Liu

For $\mathcal{X} = \{x_1, ..., x_n\}$ with $x_i \in \mathbb{R}^d$, a sample of ψ instances $\mathcal{X}' \subset \mathcal{X}$ (ψ : subsample size) is used to build an isolation tree.

For each vector $oldsymbol{x}_i \in \mathcal{X}'$

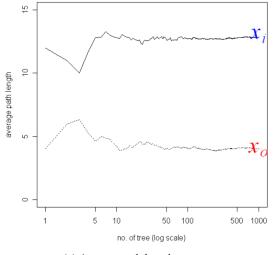
- \triangleright Select one feature randomly F_k
- $lackbox{ Compute the minimum and maximum of this feature denoted as } \max_k$ and \min_k
- ▶ Divide the space into two parts corresponding to $F_k < \frac{\max_k + \min_k}{2}$ and $F_k > \frac{\max_k + \min_k}{2}$
- lacktriangle Repeat the process until $oldsymbol{x}_i$ has been isolated

Average the numbers of steps obtained with different trees

$$E[h(\boldsymbol{x}_i)]$$

Note that it is NOT an expectation!!

Length of an average path



(c) Average path lengths converge

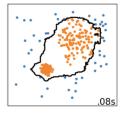
Anomaly score

Definition

$$s(\boldsymbol{x}_i, \psi) = 2^{-\frac{E[h(\boldsymbol{x}_i)]}{c(\psi)}}$$

where $E[h(x_i)]$ is the average path length for x_i and $c(\psi)$ is the average length of a path for a tree with ψ instances $(c(\psi)$ available in [Liu, 2008])

- if $E[h(\boldsymbol{x}_i)] = c(\psi)$ then $s(\boldsymbol{x}_i, \psi) = 0.5$ (uncertainty)
- if $E[h(x_i)]$ tends to 0, then $s(x_i, \psi)$ tends to 1 (x_i) is an anomaly)
- if $E[h(x_i)]$ tends to $\psi 1$, then $s(x_i, \psi)$ tends to 0 (x_i is normal)
- Separating curve: defined using the averaged lengths of the paths



Orange samples: $s(\boldsymbol{x}_i, \psi) \leq 0.5$, blue samples: $s(\boldsymbol{x}_i, \psi) > 0.5$.

Summary

Anomaly detection

- ► Classes of anomalies
- Algorithms
 - ► Distance-based algorithms
 - ► LoOF and LOOP
 - Discords
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Subspace-based methods
 - ► Neural network-based approaches
 - Online anomaly detection

Outlier detection using PCA [Shyu, 2003]

- Robust estimation of the mean and correlation matrix of normal data
 - lacktriangle Conventional estimators of the mean and correlation matrix: $ar{m{x}}$ and $m{\Sigma}_0$
 - ightharpoonup Remove the vectors with the γ th largest values of

$$d_i^2 = (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \bar{\boldsymbol{x}})$$

These vectors are more likely to be anomalies!

- lacktriangle Recompute the mean vector and the correlation matrix Σ of the remaining vectors.
- ightharpoonup Principal component analysis (PCA) of Σ
- lacktriangle Compute two test statistics from the projected vector $oldsymbol{y}_i = oldsymbol{P} oldsymbol{x}_i$

$$T_{i,q} = \sum_{j=1}^{q} \frac{y_{ij}^2}{\lambda_j} \quad U_{i,p} = \sum_{j=p-r+1}^{p} \frac{y_{ij}^2}{\lambda_j}$$

where $\lambda_1,...,\lambda_q$ are the q largest singular values of Σ (q such that 50% of the inertia is preserved), and $\lambda_{p-r+1},...,\lambda_p$ are the r smallest values of Σ . Note that $T_{i,q}$ estimates the distance between x_i and the mean vector whereas $U_{i,p}$ identifies vectors that havecorrelation structures different from the normal data.

▶ Declare that x_i is an anomaly if $T_{i,q} > c_1$ or if $U_{i,q} > c_2$.

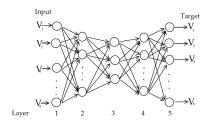
Summary

Anomaly detection

- ► Classes of anomalies
- Algorithms
 - ► Distance-based algorithms
 - ► LoOF and LOOP
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Subspace-based methods
 - ► Neural network-based approaches
 - Online anomaly detection

Outlier detection using RNNs [Hawkins, 2002]

Architecture of replicator neural networks



- ightharpoonup tanh activation functions for layers 2 and 4
- ▶ staircase activation function for layer 3
- ▶ linear or sigmoidal activation function for the output layer

How to use RNNs for outlier detection?

Weights

The weights of the hidden layers are optimized to minimize the reconstruction error across all training patterns.

$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - o_{ij})^{2}$$

where m is the number of vectors in the database, n is the number of features of x_i , x_{ij} and o_{ij} are the jth features of the ith data record x_i at the input and output of the network.

Outlier factor for the ith data record

$$\mathsf{OF}_i = \frac{1}{n} \sum_{j=1}^n (x_{ij} - o_{ij})^2.$$

The anomalies are the samples that are not well reconstructed by the network!

Summary

Anomaly detection

- Classes of anomalies
- Algorithms
 - Distance-based algorithms
 - ► LoOF and LOOP
 - Domain-based algorithms
 - One-Class SVM
 - ▶ Isolation Forest
 - Reconstruction-based algorithms
 - Neural network-based approaches
 - Subspace-based methods
 - Online anomaly detection

Online anomaly detection

One-class SVM

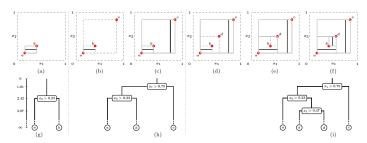
Exploit the structure of the one-class SVM problem to find a subspace minimizer for an (n+1)-point SVM problem by using the solution of the n-point problem. This can be done using active-set quadratic programming (Gao, 2015) or incremental/decremental learning (Diehl, 2003)

► Online decision trees

▶ Random Forest (Saffari, 2009): Duplicate a new observation (number of replications distributed according to a Poisson P(1) distribution) and classify these observations using the existing tree. A node is divided into two branches if 1) there is a minimum number of observations in this node, 2) the Gini index is sufficiently reduced after separation. A node is suppressed when its out-of-bag error is too large.

Online anomaly detection

- One-class SVM
- Online decision trees
 - ► Random Forest (Saffari, 2009)
 - Mondrian Forests (Lakshminarayanan, 2014): Divide the observation space into hypercubes as a Mondrian painting and update this decision tree when a new observation is arriving by continuing an existing split or by creating new branches inside an existing split.



References on anomaly detection

Surveys

- V. Chandola and A. Banerjee and V. Kumar, Anomaly detection: a survey, ACM Computing Surveys, vol. 41, no. 3, pp. 1-62, 2009.
- M. A. F. Pimentel, D. A. Clifton and L. Tarassenko, A review of novelty detection, Signal Processing, vol. 99, pp. 215-249, 2014.

LOF, LoOP and Discords

- M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, LOF: Identifying Density-Based Local Outliers, Proc. Int. Conf. Management of Data (SIGMOD), Dallas, TX, USA, 2000.
- H. P. Kriegel, P. Kröger, E. Schubert, and A. Zime, LoOP: Local outlier probabilities, Proc. Conf. Information Knowledge Management (CIKM), Hong-Kong, China, 2009.
- E. Keogh, J. Lin and A. Fu, HOT SAX: Finding the Most Unusual Time Series Subsequence: Algorithms and Application, Proc. Int. Conf. Data Mining (ICDM), Houston, Texas, Nov. 27-30, 2005.

References on anomaly detection

One-Class SVM

- B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol. 13, no. 7, pp. 1443-1471, 2001.
- D. Tax and R. Duin, Support Vector Domain Description, Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999.

Isolation Forest

 F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation Forest, Proc. IEEE Int. Conf. Data Mining, Pisa, Italy, 2008.

Reconstruction algorithms

- M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn and L. Chang, A Novel Anomaly Detection Scheme Based on Principal Component Classifier, Proc. Int. Conf on Data Mining, Melbourne, Florida, USA, Nov. 19-22, 2003.
- S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator Neural Networks, Data Warehouse Knowledge Discovery, vol. 2454, pp. 170-180, 2002.

Thanks for your attention

References on online anomaly detection

One-class SVM

- C. P. Diehl and G. Cauwenberghs, SVM Incremental Learning, Adaptation and Optimization, Proc. Int. Joint Conf. Neural Networks (IJCNN), Portland, OR, USA, July 20-24, 2003.
- K. Gao, Online One-class SVMs with Active-set Optimization for Data Streams, Proc. Int. Conf. Machine Learning and Applications (ICMLA), Miami, FL, USA, Dec. 9-11, 2015

Random forests

- A. Saffari et al., On-line Radom, Proc. Int. Conf. Computer Vision (ICCV), Kyoto, Japan, Sep. 27-Oct. 04, 2009.
- B. Lakshminarayanan, D. M. Roy and Y. W. Teh, Mondrian Forests: Efficient Online Random forests, Proc. Advances in Neural Information Processing Systsmes (NIPS), Montreal, Canada, Dec. 8-13, 2014.