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Abstract—This paper presents an unsupervised hyperspectral
image segmentation with a new subtractive-clustering-based sim-
ilarity segmentation and a novel cluster validation method using
one-class support vector (SV) machine (OC-SVM). An estima-
tion of the correct number of clusters is an important task in
hyperspectral image segmentation. The proposed cluster validity
measure is based on the power of spectral discrimination (PWSD)
measure and utilizes the advantage of the inherited cluster contour
definition feature of OC-SVM. Hence, this novel cluster validity
method is referred to as SV-PWSD. SVs found by OC-SVM are
located at the minimum distance to the hyperplane in the feature
space and at the arbitrarily shaped cluster contours in the input
space. SV-PWSD guides the segmentation/clustering process to
find the optimal number of clusters in hyperspectral data. Be-
cause of the high computational load of subtractive clustering
and OC-SVM, a subset of the image (only ground-truth data)
is initially used in the clustering and validation phases. Then,
it is proposed to use K -nearest neighbor classification, with the
already clustered subset being used as training data, to project the
initial clustering results onto the entire data set.

Index Terms—Hyperspectral images, one-class support vector
(SV) machines (OC-SVMs), phase correlation, segmentation, sub-
tractive clustering, unsupervised classification.

I. INTRODUCTION

YPERSPECTRAL imaging attracts increasing attention

among remote sensing technologies due to the high
amount of information that can be acquired. Hyperspectral
sensors gather information from hundreds of contiguous narrow
spectral bands from the visible to the infrared bands in the
electromagnetic spectrum [1]. This paper is targeted at unsuper-
vised classification or clustering/segmentation of hyperspectral
data which enables easier analysis of the high-dimensional
data, and a novel approach is presented for cluster validity of
segmented hyperspectral images.
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Subtractive clustering with Euclidean distance as well as
spectral angle measure (SAM) [2], spectral information di-
vergence (SID) [3], and phase-correlation-based [4] similar-
ity measures have been utilized in this paper for clustering/
segmentation purposes. In addition, k-means (KM) and fuzzy
c-means (FCM) algorithms have been evaluated for comparison.

Unsupervised classification (or clustering) of pixels in hy-
perspectral images typically relies on the spectral data of each
pixel. In the literature, an automated clustering approach for
hyperspectral images based on histogram thresholding has been
studied in [5], and another thresholding technique based on
histograms of principal components has been introduced in [6].
A hyperspectral image segmentation approach based on Gaus-
sian mixture models has been presented in [7], and clustering
of hyperspectral images using non-Gaussian mixture models
has been investigated in [8]. Hyperspectral image segmentation
using a multicomponent Markov chain model has been pre-
sented in [9]. Unsupervised hyperspectral image segmentation
using a neuro—fuzzy approach based on weighted incremental
neural networks has been introduced in [10]. An algorithm
referred to as independent component analysis mixture model
(ICAMM) has been developed in [11], where class distributions
are modeled with non-Gaussian densities using ICAMM that
employs higher order statistics for unsupervised classification.
A KM reclustering algorithm has been presented in [12] for
unsupervised segmentation of hyperspectral images.

One of the main problems that can be encountered in the
processing of hyperspectral data is the high data dimensionality.
Therefore, usually dimension reduction is applied in order to re-
move redundant information and accelerate processing time. In
this paper, an unsupervised band selection algorithm, namely,
singular value decomposition (SVD) band selection (SVDBS)
[13], [14] is used before segmentation to reduce the computa-
tional load. SVDBS is utilized to reduce data dimensionality
for efficient processing because it can be applied to data that do
not have any labeled training samples available. Furthermore,
the original spectral information is kept in SVDBS by selecting
only the most informative bands and removing the others,
without any transformation.

Finding an optimal number of clusters in a hyperspectral
image using an unsupervised algorithm is one of the important
problems in cluster/segmentation analysis. A novel cluster va-
lidity measure referred to as support vector power of spectral
discrimination (SV-PWSD) has been developed in this paper
for this purpose. The proposed method is based on one-class
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SV machines (OC-SVMs) and gives a cluster validity measure
by using SVs placed in the border of each cluster.

In the literature, there are a few studies dealing with SVs
for cluster validity, but it has not been applied to hyperspectral
images so far. A cluster validity measure with outlier detection
and cluster merging algorithms for SV clustering has been
introduced in [15]. The determination of the number of clus-
ters in a data set via SV machines has been studied in [16].
Another cluster validity measure that evaluates the separation
in clustering results using SVs has been presented in [17].

In brief, the presented approach consists of two stages. The
first is the clustering and validation for finding the correct
number of clusters from a subset of hyperspectral image. In the
second stage, after obtaining the number of clusters for a scene,
segmentation of the full image is accomplished using K -nearest
neighbor (KNN) classification. In KNN, the samples obtained
in the first stage with the appropriate number of clusters are
used for training. Consequently, the test set of KNN is the entire
data set to be segmented. Fig. 1 shows the cluster validation and
segmentation stages in a combined block diagram.

This paper is organized as follows. Section II provides
a brief introduction to SVDBS that is used as preprocess-
ing step in this paper. An overview of subtractive-clustering-
based segmentation is presented in Section III. In Section IV,
OC-SVM is introduced, and the proposed cluster validity
method referred to as SV-PWSD is widely explained. Experi-
mental results are presented in Section V. Finally, in Section VI,
we conclude this paper with final remarks and observations on
this subject.
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II. BAND SELECTION FOR DIMENSION REDUCTION

Because of the high number of captured bands, hyperspectral
images can contain redundant information [18]. Therefore,
dimension reduction without losing important information can
be possible. In contrast to transformation-based dimension re-
duction methods, original spectral data values are kept in band
selection techniques by selecting only the most informative
bands and removing the others. At the end of the band se-
lection process, an m-dimensional original hyperspectral cube
is reduced to d-dimensional space (d < m). In this paper,
unsupervised SVDBS is utilized for band selection.

Hyperspectral images can be represented in a matrix form
XT = [x1,X2,...,%,], where n shows the number of pixels
in the scene and x € R? represents the spectral data. In the
normalization phase, z-scores of spectral data are obtained.
The z-score transform makes the data distribution zero mean
with unit standard deviation using (1). Hence, the normalized
spectral data become more comparable

7 — M (1)
op}

Here, x shows a pixel in hyperspectral image; y; and o; show
the mean and standard deviation of the ith (i =1,2,...,d)
band, respectively, as in [13]. Then, the SVD of the ZT =
(21,22, . ..,2,] matrix is computed, and the number of selected
bands can be determined as its rank or it can be set a priori.
To obtain d selected bands, the rank revealing SVD decompo-
sition or QR factorization can be used. QR factorization is a
linear algebra operation that factors a matrix into orthogonal
components. QR factorization is carried out with a pivoting
matrix (P), in the form of VTP = QR, where V has the
first d eigenvectors of X. The matrices Q and R are the
QR factors. After finding the pivoting matrix, Y = PTX is
computed. The selected number of bands is obtained from the
first d rows of the matrix Y. Note that the transformations
used in SVDBS are only utilized to select independent bands
by selecting the most uncorrelated variables, and the bands
themselves are not transformed. More information about this
band selection technique can be found in [13] and [14].

III. SUBTRACTIVE-CLUSTERING-BASED SEGMENTATION

Subtractive clustering is an improved version of the mountain
clustering method [19]. In mountain clustering, the data space
is divided into small regions using a grid function, a potential
function referred to as the mountain function is computed at
each grid point, and grid points with higher values of this
potential function are accepted as cluster centers. The mountain
function is calculated as

M(vy) =Y e elvxl )
j=1

where v; denotes a grid point in the data space and « is a
positive distance factor (referred to as radii) that determines the
neighborhood of a cluster center. If a grid point has the highest
mountain function value, this means that there are more data
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points around this grid point than the other grid points, as nor-
mally dense regions in the data space can be accepted as cluster
centers. The spatial resolution of the grid function affects the
accuracy in the definition of the exact cluster centers. However,
if the spatial resolution is increased to obtain finer grids, the
cost of computation will increase exponentially, depending on
the dimension of the data.

In subtractive clustering [20], it has been proposed to label
each individual data point as a potential cluster center instead
of using grid points. The potential function of each data point
can be calculated similar to the mountain method as

= Z e—cllxi—x; % 3)
j=1

By using this potential function, the maximum value for all
data points in the data space can be obtained in the form of

M™™ = max (M (x;)) - )

Here, M{"®* shows the potential value of the first cluster center
for the data point x}"®*. The density of data points surrounding
x;"®* is high, and these points have also high potential values.
Hence, in the next step, one of these surrounding points could
be obtained as the next cluster center. In order to eliminate the
effect of high-density areas, all data points in the vicinity of the
obtained cluster center must be removed, so that the next cluster
center can be found in the next high-density region of the data
space. The next cluster center M (x;) can be obtained in the
form of

N () = B o) — e Y e Pl s

max

where x7%" is the previous data point obtained as the cluster
center and M J45° s its potential value. A positive constant /3
is used as a quash distance factor which is used to multiply the
radii value. Similar to radii factor, it quashes the potential for
surrounding points to be regarded as part of the cluster. This
iteration continues to a predefined number of clusters [21].

It must be noted that only cluster centers (cntg, k =1,... ¢,
where ¢ shows the number of clusters) are obtained by sub-
tractive clustering. After obtaining the cluster centers, several
similarity-based methods have been utilized for segmentation in
this paper. Hence, cluster centers and pixel values are compared
and clustered according to a similarity measure for segmen-
tation. The first similarity measure evaluated for this purpose
is the well-known Euclidean-distance-based similarity measure
that can be formulated as

EUC(x,cnty) = ; — cnty, ;)2 (6)

d
>
i=1
where d shows the dimension of the spectral data, x shows
the spectral data of the current pixel being processed, and cnt
shows the spectral data of a cluster center.
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The second similarity measure used is the normalized SAM
[2], which can be formulated as

SAM (x,cnty,)

d d d
=1—cos ! E x;cnty, ; g x7 E cnt?
im1 i=1 i—1

(N

The third one, called SID, measures the information diver-
gence between the spectral signatures. SID is based on the
concept of divergence arising in information theory, and it is
used to describe the statistics of a spectrum [3]

SID(x,cnty,) =1 — [D(x||enty) —

zpn
X) :xn/in. (8)
i=1

The fourth similarity measure evaluated is the phase-
correlation-based similarity measure [4]. If X and C NT show
the corresponding discrete Fourier transforms (DFTs) of the
spectral data of the current pixel and the spectral data of a
cluster center, the phase correlation of these two spectral signals
is defined as

D(cnty||x)]

D(x|enty) = ) log (pn (%) /pn(cnty))

©)

Ph.Cor(x,cnty) = F* [ X - ONT, }

X - CNT;|

where F'~! represents the inverse DFT. The phase correlation
result of two identical signals has a peak value of unity. The
peak of the phase correlation can be detected more accurately
than classical cross-correlation, because phase correlation gives
a distinct sharp peak in the case of high similarity between two
spectral signatures [22].

In order to perform subtractive-clustering-based segmenta-
tion, pixels are grouped into cluster whose cluster center data
have the highest similarity.

IV. OC-SVM AND SV-PWSD CLUSTER VALIDITY

OC-SVM was introduced by Scholkopf et al. [26]. OC-SVM
was proposed for estimating the support of a high-dimensional
distribution, and it is currently a popular method for outlier
detection or anomaly detection. In summary, OC-SVM maps
the data points into a high-dimensional feature space using an
appropriate kernel function. After mapping to high-dimensional
space, OC-SVM tries to find a hyperplane that separates the
high-dimensional feature vectors from the origin of the trans-
formed space with maximum margin. OC-SVM handles the
origin of the transformed feature space as the second class,
and the feature vectors in that class are regarded as outliers or
anomalies. In the quadratic programming formulation of OC-
SVM, a tradeoff parameter is utilized to control the distance
of the hyperplane from the origin and to keep most of the
samples which are regarded as training data [23]. Another
version of one-class SVM, introduced by Tax and Duin, is
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called SV domain description (SVDD) [24]. SVDD estimates
a sphere as a classification decision function that encloses most
of the training points in the high-dimensional feature space. It
distinguishes a set of target points from the outlier points while
keeping most of the target points inside the sphere.

In this paper, Scholkopf’s version of OC-SVM is considered,
which is therefore explained briefly in this section. The hyper-
spectral data set can be shown as X = [x1,...,X,], where n
shows the number of samples in the data set and x € R?. The
main aim is to estimate a decision function that takes the value
+1 in a small region containing most of the data points and —1
elsewhere. Finding the hyperplane with maximal margin can be
defined as a convex problem

m:
w1,

1 1 &
N — 2 — PR—
T ;5 p

subjectto:  (w, d(x;)) > p_— & and & >0,
i=1,...,n (10)
where &(: =1,2,...,n) shows the slack variables and v €

(0,1) is the tradeoff parameter that controls the number of
outliers and model complexity. Here, p denotes the margin.
Any data point in the data set is projected to a feature space
by a nonlinear transformation function (¢ : X — F'). For the
classification of a data point, a decision function that assigns a
label to this point can be obtained with

f(x) =sgn((w, o(x;)) — p) - (1)

Introducing the Lagrange multiplier theorem and the
Karush—Kuhn-Tucker complementary, the following equation
can then be derived using the Lagrange multipliers (cv;)

W= Z i h(x;) (12)
where only a subset of points x; that have minimum distances
to the hyperplane has nonzero values of «;. These points are
called SVs. Instead of solving this primal optimization problem,
the Wolfe dual of this problem can be represented as follows:

. 1
Jmin 20 ek ()

i=1 j=1

. 1
subjectto: 0<a; < —,
vn

dai=1, i=1,...,n
7

where K (x;,%;) = ¢(x;) - ¢(x;) shows a Mercer kernel. Us-
ing kernel functions, the decision function can be transformed
into a high-dimensional feature space for the nonlinearly sep-
arable case. In this way, the hyperplane can be represented in
the feature space [25], [26]. Thus, the decision function in the
feature space can be formulated as

f(x) =sgn (Z o K (x,%) — p) .

An objective statistical criterion needs to be defined for the
validation of clustering methods. For this purpose, a modi-
fied version of the PWSD, which is given in [2], is utilized.

(13)

(14)
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Basically, the proposed cluster validity measure is based on
the modified PWSD measure and utilizes the advantage of
the inherited cluster contour definition feature of OC-SVM,
as stated in [27] and [28], by using Gaussian kernel. SVs
obtained by OC-SVM are located at the minimum distance to
the hyperplane in the feature space and at the arbitrarily shaped
cluster boundary of the input space.

In the proposed cluster validation measure, referred to as SV-
PWSD, the correct number of clusters is determined using SVs
of each cluster obtained by OC-SVM. In the input space, SVs
lie on the cluster boundaries, and instead of using all spectral
data, only SV spectral data that represent the shapes of the
clusters will be utilized.

The PWSD provides a measure of discrimination for a certain
pixel with respect to two reference cluster centers. Represen-
tative cluster signatures are calculated by averaging the pixel
data in each cluster. If x is used to show the spectral data of a
pixel and s; and s; are two cluster representatives, the PWSD
measure is defined in this paper by using phase correlation as

Q(si,s;,%x) = max { Ph.Cor(si,x) Ph.Cor(s;, x) } .

Ph.Cor(sj,x)’ Ph.Cor(s;,x)
(15)

For each pixel x; in the ¢th cluster, the PWSD is computed
using the representative signature of the cluster to which the
pixel belongs to (s;) and the representative signatures of all
other clusters s;, (¢ # j). The segmentation accuracy (SA) for
one pixel (the pixel x;) is then obtained as the average of the
PWSD measures and can be formulated as

SA(x;) = mean{Q(s;,s;,%x;)) |5, =1,...,¢,1 % j} (16)

where ¢ shows the total number of clusters.

The PWSD value is by definition always larger than one,
and the discrimination capability is regarded to increase with
increased PWSD value. The segmentation performance of a
certain approach can be obtained by averaging the SA values
computed for all pixels in the scene.

In SV-PWSD, SV representatives (sgv;) are calculated by
separately averaging the SVs of each cluster. For each SV
(xsv;) in the ith cluster, the SV-PWSD is computed by using
the SV representative of the cluster (sgy;) to which xgv;
belongs to and the SV representatives of other clusters ssv,
(i # j) in the form of

Qsv(ssvisSsvj, Xsvi)

e {Ph.COT(SSVi7XSVi) Ph.C’or(ssvj7XSVZ—)}
=max , .
Ph.COT(SSVj 7XSVi) Ph.COT’(SSVZ‘,XSVi)

A7)

The SV-SA for one SV (the SV xgv;) is then obtained as the
average of the SV-PWSD measures and can be formulated as

SV-SA(xsv) = mean {Qgsv (ssvi, Ssvj, Xsv)

fij=1,oci# it (8
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Fig. 2. Part of sample scene in DC Mall data (50th band), which is used in the
experiments.

Fig. 3. Part of the sample scene in ROSIS 03 University data (75th band),
which is used in the experiments.

The SV-PWSD value is also by definition always larger than
one, and the discrimination capability is regarded to increase
with increased SV-PWSD value. The segmentation perfor-
mance of a clustering method can be obtained by averaging
all SV-SA values obtained for only SV pixels in the scene. It
must be noted that a clustering method is regarded to have good
segmentation capability if the corresponding SV-SA measure
is much larger than unity. Furthermore, a good segmentation
capability is highly correlated with the cluster validity measure,
because a cluster validity measure indicates the quality of
clustering results and, by implication, the capability of good
segmentation. Hence, the cluster validity of utilized clustering
methods can be evaluated by the distance of their SV-SA
measure from one and assessed comparatively with each other.

V. EXPERIMENTAL RESULTS

In the experiments, initially, the HYDICE hyperspectral im-
age of Washington DC Mall is used [29]. This hyperspectral
data set consists of bands between 0.4 to 2.4 um in the elec-
tromagnetic spectrum. The scene contains 1280 lines/scene and
307 pixels/line. A rotated sample image is shown in Fig. 2. The
band number is first reduced from 210 to 191 spectral bands by
removing water absorption bands affected by the atmosphere.

In the second experiment, the Reflection Optics System
Imaging Spectrometer (ROSIS 03) hyperspectral data collected
over the University of Pavia, Pavia, Italy, are used [30]. A
rotated sample image is shown in Fig. 3. This scene has
610 lines/scene and 340 pixels/line and contains bands between
0.43 to 0.86 um in the electromagnetic spectrum. Initially, wa-
ter absorption bands affected by the atmosphere are removed,
and the band number is reduced from 115 to 103 spectral bands.

The ground truth of ROSIS University includes nine classes,
i.e., asphalt, meadows, gravel, trees, metal, soil, bitumen,
bricks, and shadow. After removing some of the training sam-
ples which have zero features, the full training set contains
3921 samples [30]. Ground truth is also available for the DC
Mall data set, and there are 8079 labeled pixels for a total of
seven classes, including roofs, roads, grass, trees, trail, water,
and shadow [29].
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In the dimension reduction step, SVDBS has been applied.
The implementation of this algorithm is available through
the Hyperspectral Image Analysis Toolbox platform [31]. The
numbers of selected bands are set to 20, 30, 40, and 50 for
both experiments. In the DC Mall and University data sets,
only supplied training samples (ground truths) are utilized in
the clustering and validation phases to enable comparison with
the available ground truth.

As stated before in the introduction section, the presented
approach consists of two stages. The first stage has initial
clustering and validation phases. To overcome the high com-
putational load of subtractive clustering and OC-SVM, partic-
ularly for a high volume of hyperspectral images, it is initially
proposed to use a subset of the image (training samples) in this
paper. In the experiments, only the ground-truth data of each
hyperspectral image have been selected as an initial subset. In
the second stage, after assigning the labels for each pixel in this
subset, KNN-based classification is used to project the initial
clustering results onto the entire data set. Hence, the entire data
set is assigned to corresponding clusters according to the KNN
classification results.

In the subtractive-clustering-based similarity segmentation
method, subtractive clustering is initially employed to deter-
mine high-density areas as candidate cluster centers. Subtrac-
tive clustering is applied to obtain from 5 to 10, and also 12
and 14 cluster centers for the DC Mall data and from 7 to 12
and also 14 and 16 candidate cluster centers for the University
data in the presented results. Then, clustering/segmentation
is performed using these cluster centers and an appropriate
similarity measure. In order to perform subtractive-clustering-
based segmentation, first of all, the densest cluster centers are
found by adjusting the radii value. The quash distance factor 3
value is fixed experimentally to 1.1. Spectral data that are most
similar to a cluster center obtained by subtractive clustering are
grouped into the same cluster by using the Euclidean distance
(EUC)-, SAM-, SID-, and phase-correlation-based similarity
measures. Furthermore, for comparison purposes, KM and
FCM algorithms are also utilized, with a predefined number of
clusters. In KM and FCM, the error tolerance is set to 0.0001
experimentally.

After clustering of the subsets, OC-SVM is utilized for
obtaining SVs that define the shape of the cluster boundary
in the input space of each cluster. Note that SVs are used for
validation purposes but not for any segmentation purposes. In
SV-PWSD, SVs are considered to represent the border of a
cluster instead of each sample in the cluster. This approach can
also reduce the computational load of validation. In OC-SVM
data, samples are mapped from input space to high-dimensional
feature space by a Gaussian kernel function

K(x;,x;) = exp (—Hxi — xj||2/202) . (19)

The Gaussian kernel permits one to get cluster contour repre-
sentations in the input space [28]. There are two important user-
specified parameters in OC-SVM: the width of the Gaussian
kernel (o) in (19) and the tradeoff term (v) in (10). These
parameters have been set after evaluation in a range to get the
best results. For Gaussian kernel (o), results are obtained in
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TABLE 1
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR DC MALL SCENE (20 BANDS)
Number of Sub.Clus+Ph.Corr. Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA
5 1.3862 1.4028 1.3837 | 1.4008 | 1.3612 | 1.3791 | 1.3835 | 1.4007 | 1.3364 | 1.3609 | 1.3647 | 1.3817
6 1.3736 1.3872 1.3694 | 1.3923 | 1.3558 | 1.3848 | 1.3747 | 1.3927 | 1.3638 | 1.3560 | 1.3865 | 1.3975
7 1.4039 1.3946 1.3764 | 1.3899 | 1.3723 | 1.3870 | 1.3796 | 1.3900 | 1.3674 | 1.3880 | 1.3915 | 1.4015
8 1.3956 1.4016 1.3890 | 1.4018 | 1.3800 | 1.3999 | 1.38068 | 1.4020 | 1.3633 | 1.3863 | 1.3663 | 1.3809
9 1.3824 1.3877 1.3760 | 1.3901 | 1.3701 | 1.3867 | 1.3772 | 1.3903 | 1.3482 | 1.3693 | 1.3564 | 1.3775
10 1.3984 1.4000 1.3874 | 1.4003 | 1.3805 | 1.3947 | 1.3917 | 1.4002 | 1.3398 | 1.3540 | 1.3546 | 1.3699
12 1.3755 1.3830 1.3845 | 1.3843 | 1.3642 | 1.3762 | 1.3802 | 1.3841 | 1.3363 | 1.3463 | 1.3567 | 1.3704
14 1.3773 1.3869 1.3781 1.3866 | 1.3692 | 1.3781 | 1.3862 | 1.3864 | 1.3327 | 1.3486 | 1.3318 | 1.3487
TABLE 1I
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR DC MALL SCENE (30 BANDS)
Number of Sub.Clus+Ph.Corr. Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA
5 1.4802 1.5104 1.4630 | 1.4997 | 14350 | 1.4841 1.4604 | 14995 | 14518 | 1.4936 | 1.4312 | 1.4844
6 1.4879 1.5271 1.4794 | 1.5170 | 1.4843 | 1.5087 | 1.4909 | 1.5167 | 1.4687 | 1.5089 | 1.4581 1.5063
7 1.4901 1.5080 1.4879 | 1.5068 | 14758 | 1.4953 | 1.4889 | 1.5062 | 1.4839 | 1.5084 | 1.4692 | 1.5044
8 1.4757 1.5014 1.4695 | 1.4975 | 14680 | 1.4889 | 1.4693 | 1.4977 | 1.4648 | 1.4892 | 1.4670 | 1.4948
9 1.4829 1.4859 1.4646 | 1.4876 | 1.4530 | 1.4752 | 1.4663 | 1.4870 | 1.4778 | 1.5084 14535 1.4855
10 1.4615 14678 1.4587 | 1.4683 | 1.4450 | 1.4603 | 1.40611 1.4674 | 1.4664 | 1.4904 | 1.4330 | 1.4750
12 1.4822 1.4976 1.4828 | 1.4987 | 1.4481 | 1.4811 | 1.4940 | 1.4985 | 1.4466 | 1.4799 | 1.4365 | 1.4770
14 1.4612 1.4823 1.4542 | 1.4779 | 14371 | 14633 | 1.4640 | 1.4779 | 1.4445 | 14779 | 1.4253 | 1.4588
TABLE III
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR DC MALL SCENE (40 BANDS)
Number of [ Sub.Clust+Ph.Corr. | Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA
5 1.4858 1.5403 1.4608 | 1.5328 | 1.4594 | 1.5257 | 1.4582 | 1.5328 | 1.4690 | 1.5286 | 1.4573 | 1.5257
6 1.5247 1.5578 1.4998 | 1.5306 | 1.4862 | 1.5199 | 1.4944 | 1.5297 | 1.4931 1.5208 | 1.4404 | 1.4986
7 1.5555 1.5634 1.5443 | 1.5450 | 1.4802 | 1.5221 | 1.5358 | 1.5446 | 1.5109 | 1.5171 | 1.4904 | 1.5292
8 1.5192 1.5261 1.5371 | 1.5301 | 1.4935 | 1.5142 | 1.5169 | 1.5223 | 1.4877 | 1.5183 | 1.4828 | 1.5420
9 1.5181 1.5299 1.4993 | 1.5151 | 1.4673 | 1.4990 | 1.5150 | 1.5140 | 1.4868 | 1.5014 | 1.4629 | 1.5172
10 1.5152 1.5108 14916 | 1.4950 | 1.4710 | 1.4846 | 1.4945 | 1.4935 | 1.4610 | 1.4978 | 1.4788 | 1.5223
12 1.5173 1.5271 1.4995 | 1.5255 | 1.4831 | 1.5143 | 1.5159 | 1.5254 | 1.4581 | 1.4882 | 1.4785 | 1.5235
14 1.4908 1.4980 1.4860 | 1.4910 | 1.4673 | 1.4869 | 1.4793 | 1.4913 | 1.4221 | 1.4822 | 1.4744 | 1.4994
TABLE 1V

AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR DC MALL SCENE (50 BANDS)

Number of | Sub.Clus+Ph.Corr. Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA
5 1.2429 1.2840 1.2317 | 1.2818 | 1.2448 | 1.2814 [ 1.2304 | 1.2814 | 1.2443 | 1.2790 | 1.2348 | 1.2777
6 1.2759 1.3010 1.2544 | 1.2979 | 1.2763 | 1.2958 | 1.2778 | 1.2973 | 1.2762 | 1.2957 | 1.2280 | 1.2617
7 1.2796 1.2921 1.2799 | 1.2899 | 1.2624 | 1.2822 [ 1.2782 | 1.2883 | 1.3002 | 1.3220 | 1.2815 | 1.3000
8 1.2778 1.2840 1.2672 | 12813 | 1.2541 | 1.2732 | 1.2559 | 1.2806 | 1.2854 | 1.2963 | 1.2752 | 1.2905
9 1.2578 1.2795 1.2777 | 1.2820 | 1.2670 | 1.2758 | 1.2835 | 1.2812 | 1.2779 | 1.2860 | 1.2581 | 1.2781
10 1.2686 1.2661 1.2676 | 1.2673 | 1.2560 | 1.2620 | 1.2744 | 1.2666 | 1.2704 | 1.2747 | 1.2544 | 1.2682
12 1.2482 1.2506 1.2544 | 1.2534 | 1.2371 | 1.2471 | 1.2538 | 1.2529 | 1.2696 | 1.2747 | 1.2705 | 1.2948
14 1.2709 1.2730 1.2725 | 12719 | 1.2587 | 1.2688 | 1.2647 | 1.2723 | 1.2277 | 1.2359 | 1.2551 | 1.2600

the range of between 0.1 and 2 with 0.1 incremental steps.
The tradeoff term (v) is changed between 0.1 and 0.5 with
0.1 incremental steps for all data subsets to obtain the best

results.
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Tables I-IV show the average SA values obtained by PWSD
and SV-SA values obtained for the proposed SV-PWSD cluster
validation methods for the DC Mall. This data set has been eval-
uated with different numbers of bands selected by SVDBS (20,
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2942 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 8, AUGUST 2011

TABLE V
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR ROSIS UNIVERSITY SCENE (20 BANDS)
Number of Sub.Clus+Ph.Corr. Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SVSSA | SA | SV-SA| SA | SVSSA| SA |[SVSA| SA | SV-SA | sA
7 1.1771 1.3529 1.4129 | 1.3477 1.3345 1.3045 1.4110 | 1.3419 | 1.2498 1.3338 1.3239 | 1.3294
8 1.2398 1.3828 1.3039 | 1.3158 1.3015 1.2777 1.3046 | 1.3134 | 1.2961 1.3109 1.2935 1.3092
9 1.4389 1.4976 1.3325 | 1.3669 | 1.3651 | 1.3834 | 1.3282 | 1.3430 | 1.3005 | 1.2921 | 1.2898 [ 1.2971
10 1.3866 1.4842 1.2926 | 1.2983 | 1.3618 | 1.3676 | 1.2909 | 1.2948 | 1.2589 | 1.2776 | 1.2588 [ 1.2706
11 1.3250 1.4100 1.2829 | 1.2874 | 1.4709 1.3945 1.2970 1.2827 1.2456 | 1.2618 1.2492 | 1.2640
12 1.3396 1.4169 1.3048 1.3296 1.3990 1.4326 1.3000 1.3301 1.2748 1.2632 1.2380 | 1.2517
14 1.3841 1.4658 1.3523 | 1.3463 | 1.4237 | 1.4075 | 1.3315 | 1.3453 | 1.2393 | 1.2513 | 1.2494 | 1.2454
16 1.3824 1.4508 1.3961 | 1.3853 | 1.4158 | 1.4005 | 1.3826 | 1.3867 | 1.2386 | 1.2391 | 1.2766 | 1.2366
TABLE VI
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR ROSIS UNIVERSITY SCENE (30 BANDS)
Number of [ Sub.Clus+Ph.Corr. | Sub.Clus+SAM Sub.Clus+Eue. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SVSSA | SA | SV-SA| SA | SVSSA| SA |[SVSA| SA | SVSSA | sA
7 1.3026 1.4029 1.4480 | 1.4322 1.3785 1.3939 1.4160 | 1.4206 1.2943 1.3821 1.2971 1.3596
8 1.3202 1.3936 1.3827 | 1.3851 1.3487 1.3669 1.3905 1.3773 1.2652 | 1.3326 1.2642 | 1.3304
9 1.3349 1.4149 1.4260 | 1.4304 | 1.3840 | 1.3346 | 1.4697 | 1.4281 | 1.4026 | 1.4218 | 1.2995 | 1.3069
10 1.2866 1.3522 1.3946 | 1.4055 | 1.3365 | 1.3155 | 1.4145 | 1.4082 | 1.2648 | 1.2975 | 1.2536 | 1.2835
11 1.2640 1.3693 1.2936 | 1.2911 1.4252 1.3653 1.2854 1.2833 1.2421 1.2910 1.2477 | 1.2695
12 1.2897 1.3484 1.3254 | 1.3169 1.4079 1.3622 1.3259 1.3093 1.2381 1.2606 1.2399 | 1.2657
14 1.3166 1.3710 1.2856 | 1.2911 | 1.3500 | 1.2987 | 1.2774 | 1.2842 | 1.2609 | 1.2518 | 1.2481 | 1.2500
16 1.3046 1.3804 1.3315 | 1.3403 | 1.4374 | 1.3789 | 1.3817 | 1.3341 | 1.2244 | 1.2370 | 1.2464 | 1.2271
TABLE VII

AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR ROSIS UNIVERSITY SCENE (40 BANDS)

Number of | Sub.Clus+Ph.Corr. | Sub.Clus+SAM Sub.Clus+Euc. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA
7 1.5525 1.4464 | 1.5166 | 1.5584 | 1.3423 | 1.3432 | 1.5578 | 1.5498 | 1.4256 | 1.4744 | 1.3962 | 1.4709
8 1.4907 1.4000 | 1.4743 | 1.5101 | 1.3119 | 1.3118 | 1.5024 | 1.5014 | 1.4066 | 1.4773 | 1.3586 | 1.4260
9 1.5632 1.5547 | 1.4804 | 1.4969 | 1.3156 | 1.3030 | 1.5485 | 1.5485 | 1.5186 | 1.5401 | 1.3631 | 1.3944
10 1.4505 1.3972 | 14196 | 14592 | 1.2934 | 1.2774 | 1.4650 | 1.4650 | 1.3783 | 1.4383 | 1.3407 | 1.3636
11 1.5091 1.5006 | 1.4387 | 1.4438 | 1.2900 | 1.2673 | 1.4851 | 1.4851 | 1.3580 | 1.4123 | 1.3235 | 1.3414
12 1.5256 1.5227 | 13814 | 1.4238 | 1.2991 | 1.2618 | 1.4036 | 1.4036 | 1.3126 | 1.3266 | 1.3360 | 1.3854
14 1.4817 1.4581 1.4154 | 1.3945 | 1.3464 | 1.2667 | 14196 | 1.4196 | 1.2912 | 1.2982 | 1.3220 | 1.3544
16 1.5295 1.4890 | 1.5093 | 1.4769 | 1.4742 | 1.3354 | 1.5087 | 1.5087 | 1.3084 | 1.3284 | 1.3065 | 1.3286
TABLE VIII
AVERAGE SV-SA AND SA RESULTS FOR DIFFERENT UNSUPERVISED CLUSTERING METHODS FOR ROSIS UNIVERSITY SCENE (50 BANDS)
Number of [ Sub.Clus+Ph.Corr. | Sub.Clus+SAM Sub.Clus+Eue. Sub.Clus+SID K-Means FCM
Clusters SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA SV-SA SA

7 1.6310 1.5525 1.6353 | 1.6062 | 1.3385 | 1.3719 | 1.6645 | 1.5995 | 1.5448 | 1.5353 | 1.5267 [ 1.5243
8 1.6549 1.5976 1.5908 | 1.4826 | 1.3088 | 1.3374 | 1.5370 | 1.4444 | 1.4954 | 1.4788 | 1.4852 | 1.4748
9 1.6715 1.6333 1.5589 | 1.4417 | 1.3118 | 1.3231 | 1.4841 | 1.4099 | 1.6533 | 1.7300 | 1.4404 | 1.4343
10 1.5965 1.5786 | 1.5652 | 14723 | 1.2800 | 1.2920 | 1.5271 | 1.4597 | 1.4274 | 1.4054 | 1.4780 | 1.4023
11 1.6110 1.5928 1.5574 | 1.4561 | 1.3140 | 1.2820 | 1.5274 | 1.4474 | 1.3916 | 1.3813 | 1.3890 | 1.3766
12 1.6110 1.5870 1.4684 | 1.4906 | 1.3660 | 1.2977 | 1.4793 | 1.4795 | 1.3657 | 1.4481 | 1.3669 | 1.3570
14 1.5767 1.5545 1.4425 | 1.4993 | 1.3801 | 1.3013 | 1.4593 | 1.4923 | 1.3567 | 1.3340 | 1.3289 | 1.4020
16 1.6093 1.5448 1.6258 | 1.5693 | 1.4801 | 1.3634 | 1.6462 | 1.5768 | 1.3283 | 1.3094 | 1.3257 | 1.3035

30, 40, and 50 bands, respectively). In Tables I-III, the highest
SV-SA values are obtained by subtractive clustering with phase
correlation method. The only exception is in Table IV; in this
case, the highest result is achieved using KM. In Tables I-IV,
the highest SV-SA values for subtractive clustering with phase

correlation, KM, and FCM are always obtained for seven
clusters, which is the actual number of clusters that is known
to be included in the scene. Moreover, according to the re-
sults of the DC Mall, it can be said that SV-PWSD gives
more accurate and consistent information about the number of
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clusters compared with PWSD. If all tables related with DC
Mall scene (Tables I-IV) are examined, it can be seen that
all of the methods except subtractive clustering with Euclidean
distance clearly indicate that the number of clusters should be
taken as seven for the DC Mall data (which is concordant with
the number of labels supplied with the ground truth). In Table I,
subtractive clustering with SAM is the only exception. Hence,
there is actually a consensus between the methods.

Tables V-VIII show the average SA obtained by PWSD
and the SV-SA values for the proposed SV-PWSD cluster
validation algorithm for the ROSIS University data. Similar
to the previous tables, Tables V-VIII show the results for
different numbers of bands obtained by SVDBS (20, 30, 40,
and 50 bands, respectively). In Tables V-VIII, the highest
SV-SA values are always obtained by subtractive clustering
with phase correlation or KM (in Table VI). For this data set,
only subtractive clustering with phase correlation and KM give
consistent results with the correct number of clusters. Hence,
the number of clusters should be taken as nine for the ROSIS
University data, and it is also concordant with the number of
labels supplied with the ground truth.

According to the experimental results presented in
Tables I-VIII, it can be concluded that SV-PWSD is more
suitable than PWSD in defining the number of clusters using
subtractive clustering with phase correlation and KM. However,
in Tables I-VIII, it can be seen that subtractive clustering with
phase correlation method generally gives higher SV-SA values
than KM (in six out of eight tables). Note that SV-PWSD uses
only SVs in a cluster representation for computing the cluster
validity measure. Furthermore, it can be seen that, among all of
the clustering methods in the Tables I-VIII, subtractive cluster-
ing with phase correlation method and KM give more accurate
results for obtaining the exact number of available clusters.
Thus, it can be said that subtractive clustering with phase cor-
relation method and KM are more steady and reliable methods
against other methods in the validation of cluster number.

Because of the high computational load of subtractive clus-
tering and OC-SVM, these approaches cannot be applied to
data sets with large number of samples directly, as observed in
the experiments. Therefore, it is proposed to use KNN-based
classification to project the initial clustering results obtained
with a small subset onto the entire data set. KNN as a supervised
classification technique has advantages of fast computation and
good generalization performance. In the experiments K (num-
ber of nearest neighbors) was chosen as nine (after evaluations
in the range of K’ =1, 3,5, ..., 15), which gives the maximum
average SA value. Finally, the standard average SA values
are computed using the regular PWSD measure to assess the
segmentation performance (SV-PWSD is not used in this case
because of computational constraints). These values are shown
in Tables IX and X for the DC Mall and University data sets.
From Tables IX and X, it can be seen that the best average SA
values are obtained by subtractive clustering with phase corre-
lation and KM, respectively. The highest values are obtained for
40 bands for the DC Mall and 50 bands for the University hy-
perspectral images. Figs. 4 and 5 show the segmentation maps
of the scenes obtained by subtractive clustering with phase-
correlation-based similarity measure and KM, respectively.
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TABLE IX
AVERAGE SA RESULTS OF THE ENTIRE DC MALL SCENE
Number SC+ SC+ SC+ SC+
of Bands EUC SAM SID PC KM FCM
20 1.3642 1.3591 1.3593 1.3475 1.3527 1.3717
30 1.4051 1.4317 | 1.4308 1.4325 1.4386 1.4270
40 1.4122 1.4472 1.4475 1.4494 1.4321 1.3870
50 1.2205 1.2330 | 1.2322 1.2436 1.2526 1.2473
TABLE X
AVERAGE SA RESULTS OF ENTIRE UNIVERSITY SCENE
Number SC+ SC+ SC+ SC+
of Bands EUC SAM SID PC KM FCM
20 1.3442 1.4148 1.3795 1.3834 1.3026 1.3508
30 1.2981 1.3017 1.3713 1.4428 1.2293 1.2773
40 1.4520 1.4870 | 1.3276 1.5080 1.1963 1.3635
50 1.4847 1.4750 1.3687 1.5224 1.6538 1.2774

Fig. 4. Segmentation map of the DC Mall data with seven clusters obtained
by subtractive clustering with phase correlation method for 40 bands.

Fig. 5. Segmentation map of the ROSIS University data with nine clusters
obtained by KM for 50 bands.

VI. CONCLUSION

Hyperspectral image segmentation based on subtractive clus-
tering with phase correlation method and a novel approach
for cluster validation based on OC-SVM and PWSD have
been presented in this paper. In the proposed cluster validation
technique (SV-PWSD), OC-SVM is utilized for obtaining SVs
that identify the shape of the cluster boundary of each cluster
in the input space. SVs found by OC-SVM are located at the
minimum distance to the hyperplane in the feature space and at
the arbitrarily shaped cluster contours in the input space. It is
shown that the proposed cluster validity method finds accurate
number of clusters by using subtractive clustering with phase
correlation and KM. Thus, it can be said that the proposed
cluster validity method can help to explain the unknown cluster
structure in hyperspectral data sets.
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