Convolutional Neural Networks Machine Learning

A. Carlier

2024

Carl	

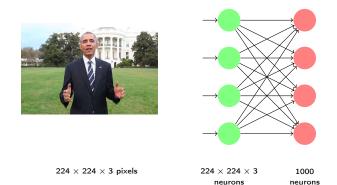
2024

▶ ∢ ∃ ▶

∃ ⊳

Image classification on ImageNet

Images of shape 224 \times 224 \times 3, 1000 classes :



A single-layer perceptron would require 224 \times 224 \times 3 \times 1000 + 1000 parameters, i.e. $\approx \! 150$ million parameters!

▶ < ≣ ▶ < ≣ ▶</p>
2024

Outline

1 Convolutional layers

- 2 Convolutional architectures
- 3 Visualization

Transfer learning

B → B

Image: A matrix

*

-1	-2	-1
0	0	0
1	2	1

=

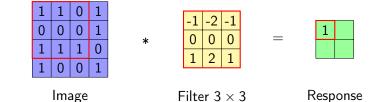
Image

Filter 3×3 f = 3 Response

2024

(a)

4/44



1*-1+1*-2+0*-1+0*0+0*0+0*0+1*1+1*2+1*1=1

f = 3

A. Carlier

2024

*

-1	-2	-1
0	0	0
1	2	1

=

Image

Filtee 3×3 f = 3 Response

(a)

*

-	1	-2	-1
()	0	0
1	L	2	1

=

Image

Filter 3×3 f = 3

Response

イロト イヨト イヨト イヨト

*

-1	-2	-1
0	0	0
1	2	1

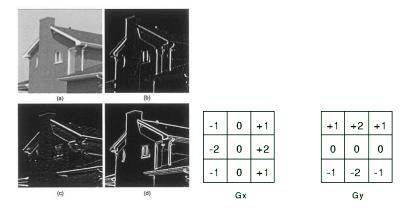
=

Image

Filter 3×3 f = 3 Response

イロト イヨト イヨト イヨト

Convolution in Signal Processing



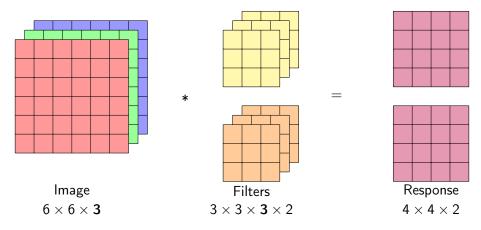
- Convolution filters (or kernels) have long been used to detect patterns in images, such as contours (here, Sobel filters)
- a white pixel indicates a high response of the filter, i.e. a pixel located on the contour of an object, with a strong local gradient.

Given :

- I a grayscale image (a single color channel) of shape $w \times h$,
- a filter K of dimension f,

Then the response I \circledast K of image I to filter K is of shape $(w - f + 1) \times (h - f + 1)$

Convolution (2D) de volumes



 \rightarrow in Keras : Conv2D(*filters*, *kernel_size*)

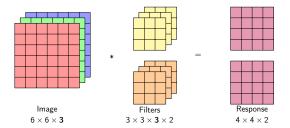
The number of channels in the input image and the depth of the convolution filters are necessarily identical.

	~	
A	Car	lier

Convolutional Neural Networks

2024

Number of parameters in convolutional layers



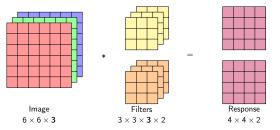
There are 2 types of parameters in a convolutional layer :

- The coefficients of the convolution filters : there are thus $f \times f \times$ #channels × #filters coefficients
- The **biases** added to the response of the convolution filters, before the application of the activation function. There is exactly one bias per convolution filter.

So in the example above, there are $3 \times 3 \times 3 \times 2 + 2 = 56$ parameters.

Image: Image:

Number of operations in convolutional layers

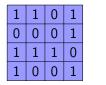


It is interesting to count the number of operations of a neural network to characterize its complexity, and the resources required for its execution. We are mainly interested in additions and multiplications (*FLOPs*). Here, each element of the answer requires :

- $(f \times f \times \#$ channels) multiplications
- ($f \times f \times \#$ channels 1) additions between the multiplied values
- 1 extra addition for the bias

Thus in the above example, there are $(4x4x2) \times (3x3x3x2) = 1728$ operations.

Padding



*

-1	-2	-1
0	0	0
1	2	1

=

Image

Filter

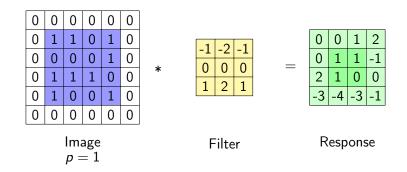
2024

イロト イヨト イヨト イヨト

14/44

Ξ.

Padding



Adding zeros (*zero-padding*) to the image border allows to obtain a response of the same dimension as the input image (*same* parameter in Keras), which makes neural network architectures simpler.

母 ▶ ≺ 国 ▶ ≺ 国 ▶ 2024

Given :

- I a grayscale image (a single color channel) of shape $w \times h$,
- a filter K of dimension f, and padding p,

Then the response I \circledast K of image I to filter K is of shape $(w + 2p - f + 1) \times (h + 2p - f + 1)$

Stride

3	1	3	5	3	3
2	2	8	8	3	9
3	4	7	7	2	7
5	3	6	8	4	7
3	8	8	5	7	4
7	9	6	4	6	9

*

-1	-2	-1
0	0	0
1	2	1

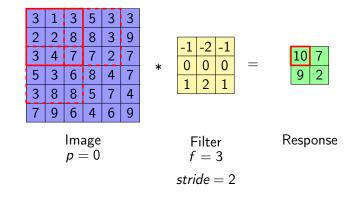
=

10	13	7	4
3	-3	-1	0
9	4	2	5
14	2	-6	2

Filter f = 3stride = 1

17 / 44

Stride



Allows to **reduce the dimension** of tensors, limiting the loss of information due to the fact that the same coefficient influences several elements of the response to the convolution filter.

Tensor dimension

Given :

- I a grayscale image (a single color channel) of shape $w \times h$,
- a filter K of dimension f, padding p, and stride s

Then the response I \circledast K of image I to filter K is of shape

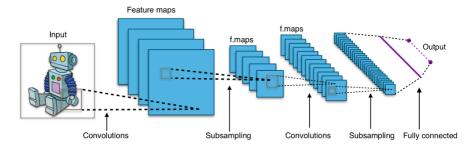
$$\lfloor \frac{w+2p-f}{s} + 1 \rfloor \times \lfloor \frac{h+2p-f}{s} + 1 \rfloor$$
 (1)

Pooling layers

12	20	30	0			
8	12	2	0	2 × 2	20	30
34	70	37	4	Max-Pooling <i>stride</i> = 2	112	37
112	100	25	12			

- Allows to reduce tensor dimension
- Preserve the high responses of the convolution filters.
- No parameters to learn !

Standard architecture of a convolutional neural network



There are 3 types of layers in a typical convolutional neural network :

- **Convolutional** layers, combined with **pooling** layers, in the first layers of the network.
- Fully connected (dense) layers in the last layers of the network.

A convolutional layer is equivalent to a fully connected layer in which some synaptic weights are shared, and the majority of which are 0.

A single example from the training set allows these weights (the convolution coefficients) to be updated multiple times.

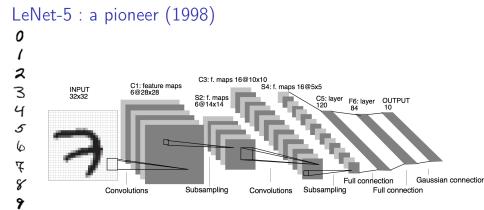
This results in a much smaller number of parameters for a convolutional network than for a fully connected network.

Outline

3 Visualization

Transfer learning

3 🕨 🤅 3

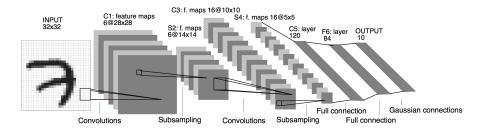


- \simeq 60k parameters
- 2 to 3 days of training for 20 epochs on MNIST (1998!).
- A majority of sigmoid activation functions

Visualization : https://adamharley.com/nn_vis/cnn/2d.html

[LeCun et al.] Gradient-based learning applied to document recognition.

Question



Number of parameters? Number of operations?

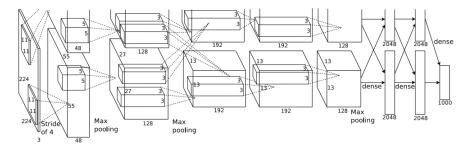
2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

25 / 44

э

AlexNet : a game changer (2012)



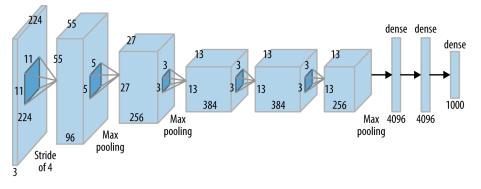
- $\bullet \simeq 60 {\rm M}$ parameters, 8 layers
- introduces the use of reLU function as a standard for neural network training.

[Krizhevsky et al.] ImageNet Classification with Deep Convolutional Neural Networks.

A. Carlier	Convolutional Neural Networks	2024	26 / 44
A. Carrier		2024	20/44

э

AlexNet : a game changer (2012)



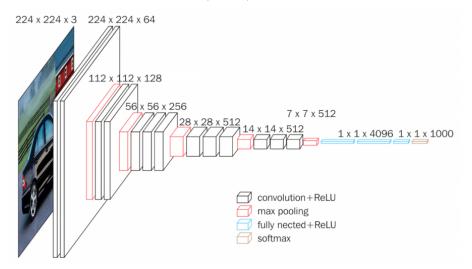
Observations :

- Gradual reduction of the filter size (11 \rightarrow 5 \rightarrow 3)
- $\bullet\,$ Gradual reduction of the image size (224 \rightarrow 55 \rightarrow 27 \rightarrow 13)
- Gradual increase in number of filters (96 ightarrow 256 ightarrow 384)
- Stride then Max Pooling

[Krizhevsky et al.] ImageNet Classification with Deep Convolutional Neural Networks

A. Carlier

VGG-16 : a new standard (2014)

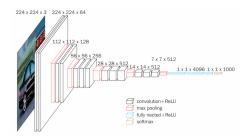


\simeq 138M parameters, 16 layers.

[Simonyan et Zisserman] Very Deep Convolutional Networks for Large-Scale Image Recognition 💦 🚌 🔗 🔉

A. Carlier	Convolutional Neural Networks	2024	28 / 44
------------	-------------------------------	------	---------

VGG-16 : a new standard (2014)

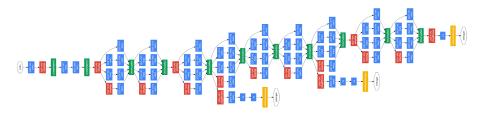


Objective : to study the impact of depth on network performance. \rightarrow For this purpose, the authors have made the network architecture very regular :

- Systematic use of 3×3 convolutions
- The main characteristics of AlexNet are taken up, but regularized :
 - Progressive decrease of the image size (224 ightarrow 112 ightarrow 56 ...)
 - Progressive increase in the number of filters (64 ightarrow 128 ightarrow 256...)

[Simonyan et Zisserman] Very Deep Convolutional Networks for Large-Scale Image Recognition

More advanced architectures

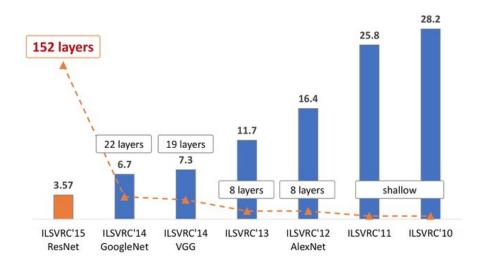


[Szegedy et al.] Going deeper with convolutions.

[He et al.] Deep Residual Learning for Image Recognition

2024

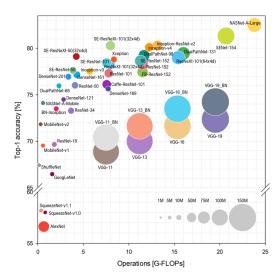
2015 : end of ImageNet challenge on image classification



31/44

э

After 2015



[Bianco et al.] Benchmark Analysis of Representative Deep Neural Network Architectures

э

Outline

- 2 Convolutional architectures
- 3 Visualization

Transfer learning

∃ >

Representation learning

X

 $\begin{array}{c} h \\ & \\ \hline \\ f \\ \hline \\ \end{array} \end{array} \begin{array}{c} h' \\ f(X) \\ \hline \\ h' \\ \hline \end{array} \end{array}$

features

A. Carlier

Convolutional Neural Networks

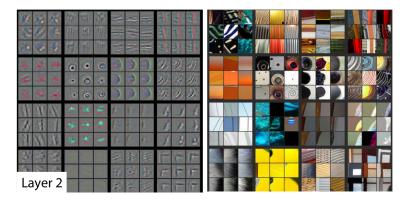
2024

What do CNN learn?

Example of filters learned on the first layer of a convolutional neural network (similar to AlexNet), and for each filter, enumeration of the 9 image patches causing the highest activation of these filters.

[Zeiler et al.] Visualizing and understanding convolutional networks.

What do CNN learn?

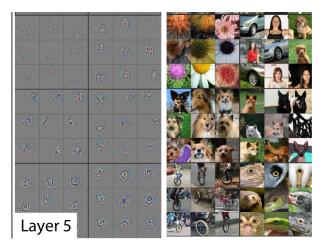


Same visualization as before, but for the second layer filters. Note that the filters on the left side are not present as is in the network : this visual representation is reconstructed.

[Zeiler et al.] Visualizing and understanding convolutional networks.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

What do CNN learn?



The detected patterns are of a higher semantic level as we progress in the network layers.

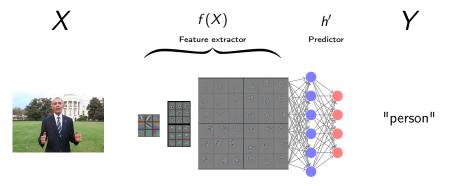
[Zeiler et al.] Visualizing and understanding convolutional networks.

A. Carlier

Convolutional Neural Networks

2024

CNN interpretation



We can see a CNN as a Representation learning algorithm : the convolutional part is a feature extractor f(X), and the extra dense layers are the actual predictor h'.

Deep neural networks learn a feature extractor from the data. That is what makes them efficient, **in cases where a large annotated dataset is available**.

Outline

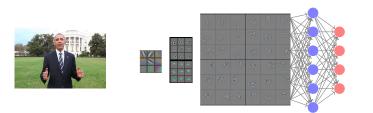
Convolutional layers

- 2 Convolutional architectures
- 3 Visualization

Transfer learning

∃ >

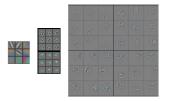
Transfer Learning



"person"

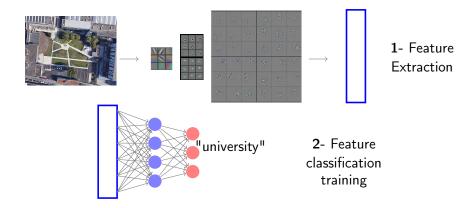
Let's assume that we have a CNN trained on a large database, such as ImageNet (\approx 14 million images).

Transfer Learning



We can extract the convolutional base which acts as a feature extractor, and reuse it for another task. This is what is called **Transfer Learning**.

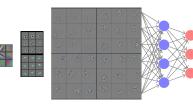
Static Transfer Learning



One can use a pre-trained network to extract features from a new database, and then train a simple classifier of those features.

2024

Transfer Learning



"university"

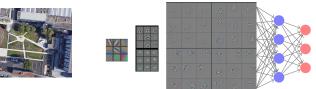
1- Feature extractor parameters are frozen

2- Dense layers from the classifier are trained

If feature extraction is included in the classifier, but its parameters are frozen, Transfer Learning supports data augmentation.

2024

Fine-Tuning



Feature extractor parameters are unfrozen and the classifier is re-trained as a whole

Once the last layers of the classifier have been trained, we can then unfreeze the parameters of the convolutional base and re-train the whole network, in order to "specify" it to the new task : this is called **fine-tuning**. **Caution : the learning rate must be very small in order not to risk destroying the general filters which were obtained during pre-training**.