Recurrent Neural Networks Machine Learning

A. Carlier

2024

Α.	

2024

-∢ ∃ ▶

Outline

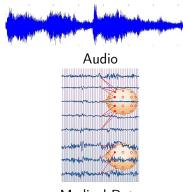
1 Introduction and Motivation

- 2 The recurrent neuron
- 3 Gated recurrent network
- 4 Recurrent neural networks
- 5 Language Models

- ∢ ∃ ▶

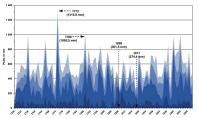
74 B

Sequential Data



Medical Data

Video

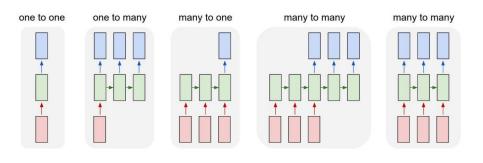


Physics-based data

But also ... Textual data!

► < Ξ >

Sequential Problems



2024

(a)

4 / 47

э

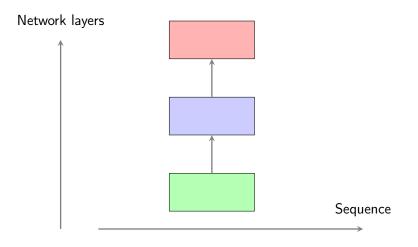
One to one

Examples : Multi-layer perceptrons, Convolutional neural networks, etc.

A. Carlier

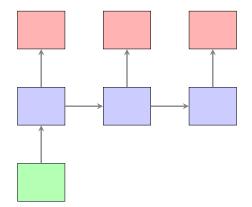
- ∢ ∃ ▶

One to one



Another representation: the input is at the bottom, and the output is on top.

One to many

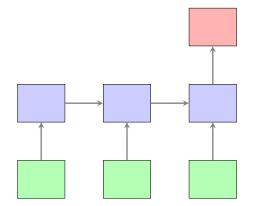


2024

イロン イ理 とく ヨン イヨン

7 / 47

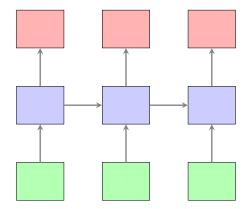
Many to one



2024

イロン イ理 とく ヨン イヨン

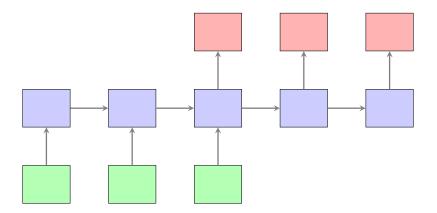
Many to many



2024

イロト イヨト イヨト イヨト

Many to many



2024

イロト イヨト イヨト イヨト

10/47

æ

Outline

Introduction and Motivation

3 Gated recurrent network

4 Recurrent neural networks

5 Language Models

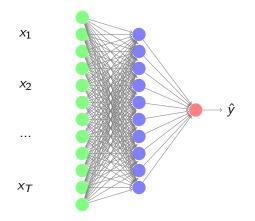
Carl	

- A II.

- 14 A

Sequential data

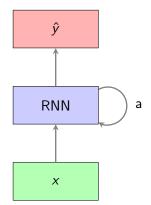
A standard multi-layer perceptron is not well suited to sequential data processing:



Sequences are of variable length and each data in the sequence is processed independently!

		• E	· • 문 • • 문 •	 *) Q (*
A. Carlier	Recurrent Neural Networks		2024	12 / 47

Recurrent neuron



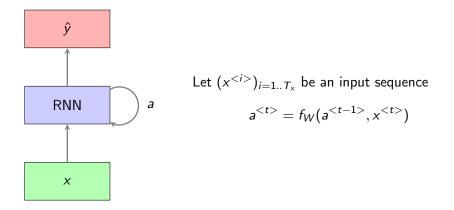
A. 1	

2024

イロト イヨト イヨト イヨト

æ

Recurrent neuron



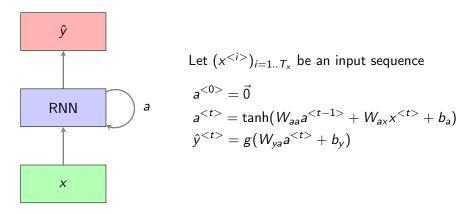
The same function f and the same parameters W are used for each sequence step.

Car	

2024

<ロト <回ト < 回ト < 回ト = 三日

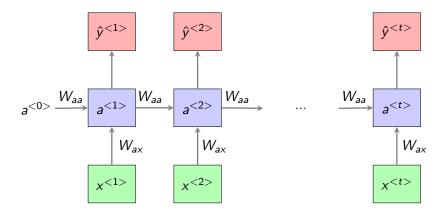
Standard recurrent neuron



g represents the activation function of the output layer, which depends on the problem (typically sigmoid, softmax, or linear).

< @ ▶ < E ▶ < E ▶ E 2024

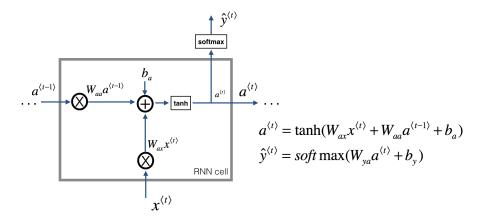
Recurrent network - developed representation



The same parameters are reused for each sequence step.

Carl	

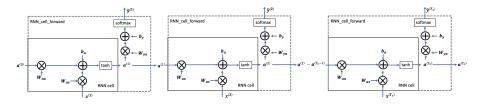
Recurrent neuron : forward pass



2024

→

Recurrent neuron : forward pass

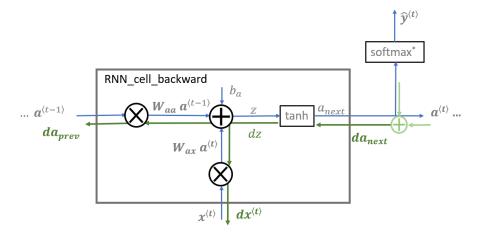


Predictions are made sequentially. Computations can not be parallelized efficiently in a recurrent network, which makes them rather slow. On the other hand, the same parameters are reused for each sequence step which makes them parameter efficient and less prone to overfitting.

2024

Recurrent neuron : backward pass

Backpropagation through time



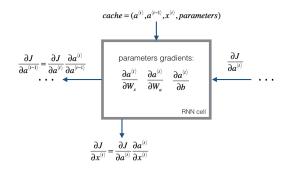
Carl	

2024

- 3 →

- ∢ ≣ →

Recurrent neuron : backward pass



$$\begin{split} a^{(i)} &= \tanh(W_{ax}x^{(i)} + W_{aa}a^{(r-1)} + b) \\ \frac{\partial \tanh(x)}{\partial x} &= 1 - \tanh(x)^2 \\ \frac{\partial a^{(i)}}{\partial W_{ax}} &= (1 - \tanh(W_{ax}x^{(i)} + W_{aa}a^{(i-1)} + b)^2)x^{(i)T} \\ \frac{\partial a^{(i)}}{\partial W_{aa}} &= (1 - \tanh(W_{ax}x^{(i)} + W_{aa}a^{(i-1)} + b)^2)a^{(i-1)T} \\ \frac{\partial a^{(i)}}{\partial b} &= \sum_{bach} (1 - \tanh(W_{ax}x^{(i)} + W_{aa}a^{(i-1)} + b)^2) \\ \frac{\partial a^{(i)}}{\partial x^{(i)}} &= W_{ax}^{T} \cdot (1 - \tanh(W_{ax}x^{(i)} + W_{aa}a^{(i-1)} + b)^2) \\ \frac{\partial a^{(i)}}{\partial a^{(i-1)}} &= W_{aa}^{T} \cdot (1 - \tanh(W_{ax}x^{(i-1)} + W_{aa}a^{(i-1)} + b)^2) \end{split}$$

⊕ ► ▲ Ξ ►
 2024

20 / 47

The gradient of the objective function with respect to the parameters includes the following term:

$$\prod_{t=1}^{T-1} \frac{\partial a^{}}{\partial a^{}}$$

This term can cause vanishing and exploding gradients!

Gradient clipping

In order to prevent exploding gradients, gradient clipping is often used:

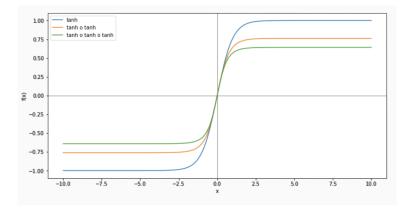
If ||g|| > c, then

$$g \leftarrow c \frac{g}{||g||}$$

In Keras for example, one can instantiate an optimizer using the *clipnorm* attribute:

opt = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)

Long-term dependencies



Using tanh as an activation function can cause issues in long sequences: tanh(tanh(...x)...) tends towards 0!

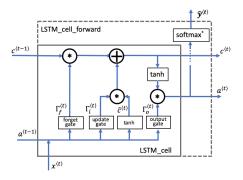
> < ≣ > < ≣ > 2024

23 / 47

э

Vanishing gradients

In 1997, Hochreiter and Schmidhuber proposed a new recurrent cell that enables long-term dependency learning and mitigates vanishing gradient problems: the LSTM (Long Short-Term Memory).



Outline

Introduction and Motivation

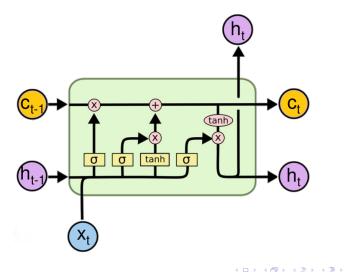
- 2 The recurrent neuron
- 3 Gated recurrent network
 - 4 Recurrent neural networks

5 Language Models

- A II.

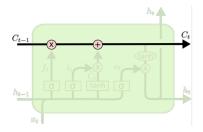
- 14 A

Reduction of the dissipation problem with a **gating mechanism** and a **memory cell**.



A key component of the LSTM is its memory cell:

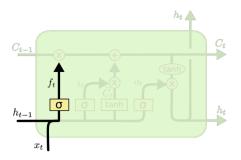
- Few operations alter it.
- It lets the information flow.



2024

Forget gate:

$$f_t = \sigma(U_f x_t + W_f h_{t-1} + b_f)$$



2024

< 47 ▶

28 / 47

æ

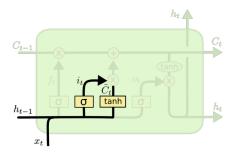
Input gate:

$$i_t = \sigma(U_i x_t + W_i h_{t-1} + b_i)$$

Input cell:

$$ilde{C}_t = anh(U_g x_t + W_g h_{t-1} + b_g)$$

The input gate i_t controls which information \tilde{C}_t enters the memory cell.



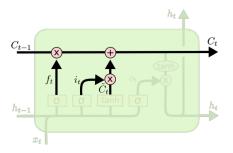
2024

Memory cell update:

 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

where * is the element-wise product.

The memory cell forgets information using f_t , and integrates new information using i_t .



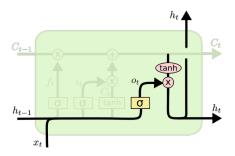
2024

Output gate:

$$o_t = \sigma(U_o x_t + W_o h_{t-1} + b_o)$$

 $h_t = o_t * tanh(C_t)$

The output gate controls what comes out of the memory cell.



Reduction of the dissipation problem with a **gating mechanism** and a **memory cell**.

$$f_{t} = \sigma(U_{f}x_{t} + W_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(U_{i}x_{t} + W_{i}h_{t-1} + b_{i})$$

$$\tilde{C}_{t} = \tanh(U_{g}x_{t} + W_{g}h_{t-1} + b_{g})$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$$

$$o_{t} = \sigma(U_{o}x_{t} + W_{o}h_{t-1} + b_{o})$$

$$h_{t} = o_{t} * \tanh(C_{t})$$

$$C_{t} = \int_{C_{t}} \int_{$$

h

32 / 47

э

Outline

Introduction and Motivation

- 2 The recurrent neuron
- 3 Gated recurrent network
- 4 Recurrent neural networks

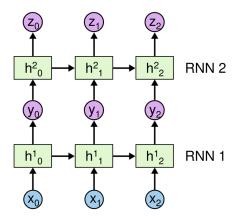
5 Language Models

- E -

Recurrent neural networks

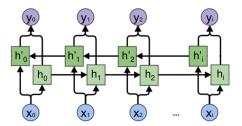
Deep Recurrent Neural Networks can be built by composing recurrent layers:

- Each layer can be a standard RNN, a LSTM, a GRU, etc.
- The first layer output sequence serves as input to the second layer, etc.



Bidirectional Networks

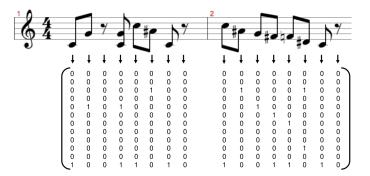
- A second RNN reads the input sequence backwards.
- This allows using information from both the past and the future.
- Both RNN have a different set of parameters.



Example: classification of musical genre

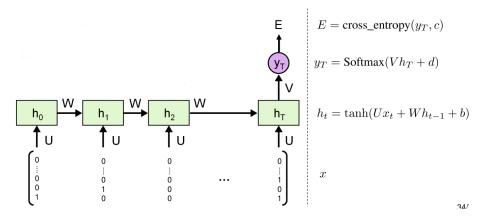
Goal: recognizing the musical genre from a music score

Input data:



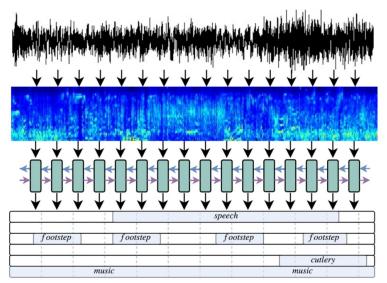
Example: classification of musical genre

Many-to-one problem:



2024

Example : acoustic event detection Many-to-many problem:



time

A. Carlier

38 / 47

Outline

Introduction and Motivation

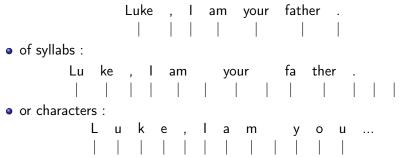
- 2 The recurrent neuron
- 3 Gated recurrent network
- 4 Recurrent neural networks

5 Language Models

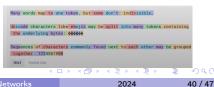
Sequential Data

A sentence is a sequence:

• of words :



These are called *tokens*. (In practice, an optimal tokenization is learned from the corpus).

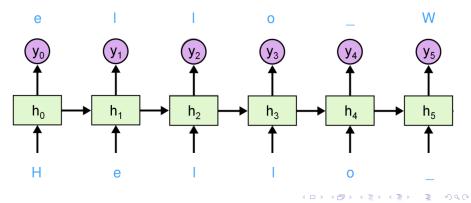


Recurrent Neural Networks

Language Model

Goal: predict the next token in a sequence.

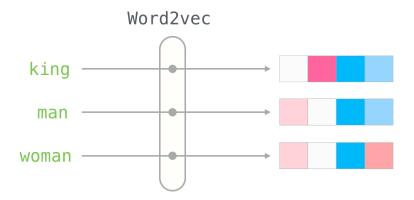
- Training dataset: tokenized text
- Input : sequence of tokens $x^{<1>}, ..., x^{<t>}$
- Target (label): $x^{<2>}, ..., x^{<t+1>}$
- Loss function: cross-entropy averaged over the sequence.



2024

Word (token) embedding

How can we represent tokens numerically?



Word (token) embedding

Embeddings are numerical representations of tokens that convey a semantic meaning:

2024

< E.

Word (token) embedding

An embedding layer is essentially a look-up table and can be learned from a training dataset.

2024

Text generation using LSTM

At initialization:

"usb9xkrd9ruaiasdsaqj'4lmjwyd61se.lcn6jey0pbco40ab'65<8um324 nqdhm<ufwty*/w5bt'nm.zq«2rqm-a2'2mstu315wtNwdqNafqh"

After one epoch:

"to will an apple for a N shares of the practeded to working rudle and a dow listed that scill extressed holding a"

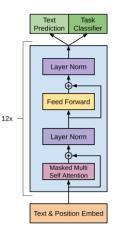
After 70 epochs:

"president economic spokesman executive for securities was support to put used the sharelike the acquired who "

Text Generation using Transformers

GPT-3 uses:

- 100k tokens
- an embedding dimension of 12788
- ullet pprox 100 layers
- ullet pprox 175 billions parameters



э