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Sequential Data

Audio Video

Medical Data Physics-based data

But also... Textual data!
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Sequential Problems
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One to one

ŷNNx

Examples : Multi-layer perceptrons, Convolutional neural networks, etc.
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One to one

Network layers

Sequence

Another representation: the input is at the bottom, and the output is on
top.
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One to many
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Many to one
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Many to many
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Many to many
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Sequential data
A standard multi-layer perceptron is not well suited to sequential data
processing:

ŷ

x1

x2

...

xT

Sequences are of variable length and each data in the sequence is processed
independently!
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Recurrent neuron

ŷ

RNN

x

a

A. Carlier Recurrent Neural Networks 2024 13 / 47



Recurrent neuron

ŷ

RNN

x

a

Let (x<i>)i=1..Tx be an input sequence

a<t> = fW (a<t−1>, x<t>)

The same function f and the same parameters W are used for each
sequence step.
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Standard recurrent neuron

ŷ

RNN

x

a

Let (x<i>)i=1..Tx be an input sequence

a<0> = 0⃗

a<t> = tanh(Waaa
<t−1> +Waxx

<t> + ba)

ŷ<t> = g(Wyaa
<t> + by )

g represents the activation function of the output layer, which depends on
the problem (typically sigmoid, softmax, or linear).
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Recurrent network - developed representation

x<1>

a<1>

ŷ<1>

x<2>

a<2>

ŷ<2>

x<t>

a<t>

ŷ<t>

...a<0>

Wax Wax Wax

Waa Waa Waa Waa

The same parameters are reused for each sequence step.
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Recurrent neuron : forward pass
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Recurrent neuron : forward pass

Predictions are made sequentially. Computations can not be parallelized
efficiently in a recurrent network, which makes them rather slow.
On the other hand, the same parameters are reused for each sequence step
which makes them parameter efficient and less prone to overfitting.
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Recurrent neuron : backward pass

Backpropagation through time
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Recurrent neuron : backward pass
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Recurrent neuron : backward pass

The gradient of the objective function with respect to the parameters
includes the following term:

T−1∏
t=1

∂a<t+1>

∂a<t>

This term can cause vanishing and exploding gradients!
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Gradient clipping

In order to prevent exploding gradients, gradient clipping is often used:

If ||g || > c , then
g ← c

g

||g ||

In Keras for example, one can instantiate an optimizer using the clipnorm
attribute:

opt = SGD(lr=0.01, momentum=0.9, clipnorm=1.0)
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Long-term dependencies

Using tanh as an activation function can cause issues in long sequences:
tanh(tanh( ... x)...) tends towards 0!
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Vanishing gradients

In 1997, Hochreiter and Schmidhuber proposed a new recurrent cell that
enables long-term dependency learning and mitigates vanishing gradient
problems: the LSTM (Long Short-Term Memory).
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Long Short-Term Memory
Reduction of the dissipation problem with a gating mechanism and a
memory cell.
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Long Short-Term Memory

A key component of the LSTM is its
memory cell:

Few operations alter it.
It lets the information flow.
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Long Short-Term Memory

Forget gate:

ft = σ(Uf xt +Wf ht−1 + bf )
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Long Short-Term Memory

Input gate:

it = σ(Uixt +Wiht−1 + bi )

Input cell:

C̃t = tanh(Ugxt +Wght−1 + bg )

The input gate it controls which
information C̃t enters the memory
cell.
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Long Short-Term Memory

Memory cell update:

Ct = ft ∗ Ct−1 + it ∗ C̃t

where ∗ is the element-wise product.

The memory cell forgets information
using ft , and integrates new
information using it .
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Long Short-Term Memory

Output gate:

ot = σ(Uoxt +Woht−1 + bo)

ht = ot ∗ tanh(Ct)

The output gate controls what comes
out of the memory cell.
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Long Short-Term Memory

Reduction of the dissipation problem with a gating mechanism and a
memory cell.

ft = σ(Uf xt +Wf ht−1 + bf )

it = σ(Uixt +Wiht−1 + bi )

C̃t = tanh(Ugxt +Wght−1 + bg )

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Uoxt +Woht−1 + bo)

ht = ot ∗ tanh(Ct)
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Recurrent neural networks

Deep Recurrent Neural Networks can
be built by composing recurrent
layers:

Each layer can be a standard
RNN, a LSTM, a GRU, etc.
The first layer output sequence
serves as input to the second
layer, etc.
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Bidirectional Networks

A second RNN reads the input
sequence backwards.
This allows using information
from both the past and the
future.
Both RNN have a different set
of parameters.
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Example: classification of musical genre

Goal: recognizing the musical genre from a music score

Input data:

A. Carlier Recurrent Neural Networks 2024 36 / 47



Example: classification of musical genre

Many-to-one problem:
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Example : acoustic event detection
Many-to-many problem:
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Sequential Data
A sentence is a sequence:

of words :
Luke , I am your father .

| | | | | | |
of syllabs :

Lu ke , I am your fa ther .
| | | | | | | | | | | | |

or characters :
L u k e , I a m y o u ...
| | | | | | | | | | | |

These are called tokens. (In practice,
an optimal tokenization is learned
from the corpus).
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Language Model
Goal: predict the next token in a sequence.

Training dataset: tokenized text
Input : sequence of tokens x<1>, ..., x<t>

Target (label): x<2>, ..., x<t+1>

Loss function: cross-entropy averaged over the sequence.
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Word (token) embedding

How can we represent tokens numerically?
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Word (token) embedding

Embeddings are numerical representations of tokens that convey a
semantic meaning:
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Word (token) embedding
An embedding layer is essentially a look-up table and can be learned from a
training dataset.
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Text generation using LSTM

At initialization:
"usb9xkrd9ruaiasdsaqj’4lmjwyd61se.lcn6jey0pbco40ab’65<8um324
nqdhm<ufwty*/w5bt’nm.zq«2rqm-a2’2mstu315wtNwdqNafqh"

After one epoch:
"to will an apple for a N shares of the practeded to working rudle and a
dow listed that scill extressed holding a"

After 70 epochs:
"president economic spokesman executive for securities was support to put
used the sharelike the acquired who "
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Text Generation using Transformers

GPT-3 uses:
100k tokens
an embedding dimension of
12788
≈ 100 layers
≈ 175 billions parameters
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