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ABSTRACT In recent years, wireless sensor networks have been extensively deployed to collect various data.
Due to the effect of harsh environments and the limitation of the computing and communication capabilities
of sensor nodes, the quality and reliability of sensor data are affected by outliers. Thus, an effective outlier
detection method is essential. The existing outlier detection methods have some drawbacks, such as extra
resource consumption introduced by the size growth of a local detector, poor performance of combination
methods of local detectors, and the weak adaptability of the dynamic changes of the environment, etc.
We propose an isolation-based distributed outlier detection framework using nearest-neighbor ensembles
(iNNE) to effectively detect outliers in wireless sensor networks. In our proposed framework, local detectors
are constructed in each node by the iNNE algorithm. A new combination method taking advantage of the
spatial correlation among sensor nodes for local detectors is presented. The method is based on the weighted
voting idea. In addition, we introduce a sliding window to update local detectors, which enables the adaption
of dynamic changes in the environment. The extensive experiments are conducted on two classic real sensor
datasets. The experimental results show our framework significantly improves the detection accuracy and
reduces the false alarm rate compared with other outlier detection frameworks.

INDEX TERMS Outlier detection, wireless sensor networks (WSN), iforest, local outlier factor (LOF),
isolation using nearest neighbor ensembles (iNNE), sliding window.

I. INTRODUCTION
With the rapid development of microelectronics and wireless
technology, Wireless Sensor Networks (WSNs) have been
extensively widely applied to a large variety of fields, such
as agriculture [1], healthcare [2], industry [3], [4], and smart
home [5]. WSNs consist of a large number of sensor nodes
densely deployed in the region of interest [6]. These sensing-
embedded components are interconnected by wireless links
and cooperate to collect high-fidelity data from different
locations. The collected data is processed and transmitted to
the sink node. The sink node is able to deliver the data to
the end-user with communication devices (e.g. the Internet).

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Khalil Afzal.

However, as the core component of the WSNs, sensor nodes
are prone to producing outliers in the collected data [6]. The
main reasons lie in three aspects [7].

1) Resource limitation. Sensor nodes have stringent
resource constraints such as battery power, storage
capacity, computing ability, and communication band-
width. The limited resource and capability make the
data generated by sensor nodes unreliable and inac-
curate. Especially when battery power is exhausted,
the probability of generating erroneous data will grow
rapidly.

2) Harsh environments. Sensor nodes are often randomly
deployed in an uncontrolled area. Thus, sensor nodes
are suffering from interference and potential damage
from a harsh environment [8].
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3) Malicious attacks. An attacker can capture a sensor
node and inject malicious codes to manipulate its oper-
ation. The captured node may produce erroneous data
by the attacker’s instructions.

The above internal and external issues may lead to unre-
liability of sensor data, which further influences quality
of raw data and aggregated results. Since actual events
occurred in the physical world, e.g., forest fire, earth-
quake or chemical spill, cannot be accurately detected using
inaccurate and incomplete data, it is extremely important
to ensure the reliability and accuracy of sensor data before
the decision-making process. Due to the fact that outliers
are one of the sources to greatly influence data quality,
in this paper, we use outlier detection techniques for the data
quality assurance in WSNs. Effective and efficient detection
of outliers helps to improve the quality of the collected
data which facilitates the decision-making of the interested
events.

In WSNs, outlier detection, also known as anomaly detec-
tion, refers to the problem of finding measurements, which
significantly deviate from the normal measurements in a
specific time period. Various outlier detection frameworks
for WSNs are reviewed in [10]: statistical-based [11]–[13],
clustering-based [14]–[16], classification-based [17]–[19],
spectral decomposition-based [20], [21], nearest neighbor-
based [22], [23], and others [24]–[26]. Another classification
based on the framework structure in [10] divides the outlier
detection frameworks into centralized structures [14] and dis-
tributed structures [9], [17], [19], [26], [27]. In a centralized
structure, the detection process is carried out at a central
location, such as a sink node or a base station which aggre-
gates the information from multiple nodes. In a distributed
structure, the detection process runs at each node. In most
cases, there is cooperation among a node and its neighbor
nodes. For a centralized structure, the communication over-
head of the data transmission to a sink node is very high.
In WSNs, radio communication among nodes is the main
reason for quick energy depletion. The energy consumption
for transmitting one bit is more than processing thousands of
bits in a node in WSNs [28]. Thus, a distributed structure that
is able to enhance the detection efficiency and effectiveness
is preferred [10].

There are lots of outlier detection frameworks based on
the distributed structure [29]. However, there are still some
drawbacks. Firstly, for a distributed structure, the detection
algorithm constructs a local detector in each sensor node.
Thus, the size growth of the local detector introduces a
considerable extra computational burden and requires more
memory in a sensor node. Meanwhile, in most distributed
outlier detection frameworks, the information given by a
local detector needs to be broadcasted in WSNs. Thus,
the size growth of a local detector also causes additional
communication overhead. Secondly, the procedures of the
combination for local detectors in some distributed outlier
detection frameworks are simple and not well described
in the related paper. Though the final performance of

frameworks is still good, the effect of combination methods
is poor. Therefore, it has great potential to improve combina-
tion methods to make the final performance better. Thirdly,
most of the existing distributed frameworks involve batch
learning. Here, batch learning refers to that all the measure-
ments are given to a local detector of the training phase for
detector training. Thus, the detector cannot keep track of
dynamic changes in the environment and becomes rigid over
time.

To overcome the drawbacks of the distributed outlier detec-
tion frameworks mentioned above, an isolation-based dis-
tributed outlier detection framework using nearest neighbor
ensembles (iNNE) for WSNs is proposed. Our framework
contains a local detector and a global detector. The local
detector is constructed based on the iNNE. The global detec-
tor is constructed by combining the local detectors of a node
and its neighbor nodes, where the formation of a neighbor-
hood is based on the spatial correlation among sensor nodes.
The final detection of measurements is executed by a global
detector of a sensor node. The main contributions of this
paper are as follows:

1) An isolation-based distributed outlier detection frame-
work using nearest neighbor ensembles is proposed.
The framework combines the advantages of the
isolation-based frameworks and the nearest neighbor-
based frameworks. Our framework utilizes the idea of
subset ensembles in the isolation-based frameworks to
reduce computation burden and memory requirement.
Moreover, we calculate outlier scores to identify out-
liers based on the distances between measurements,
which is the idea of the nearest neighbor-based
frameworks.

2) A new combination method for local detectors based
on the weighted voting is introduced. The actual dis-
tances among sensor nodes are used as the weights.
The benefit of our combination method is the
broadcast of the information of local detectors in
WSNs is avoided. Only the measurements and the
positions of sensor nodes are exchanged within a
neighborhood.

3) A self-adaptive algorithm is developed to update the
proposed framework. The key idea of the algorithm is a
slidingwindow that keeps track of the dynamic changes
of sensor data. Especially, the algorithm eliminates
the influence of the biased values caused by dynamic
changes in sensor data. Thus, the accuracy of detection
is improved.

The remainder of this paper is organized as follows.
Section II reviews the existing outliers detection frameworks
in WSNs and describes two famous algorithms in detail as
preliminary knowledge. Section III presents an isolation-
based distributed outlier detection framework using nearest
neighbor ensembles for wireless sensor networks. Section IV
evaluates the proposed framework with extensive experi-
ments. Finally, conclusions and future work are presented
in Section V.
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II. RELATED WORK
In this section, the existing outlier detection techniques are
summarized. In addition, the details of two typical algorithms
which are used for comparison in section IV are provided as
preliminary knowledge.

A. DETECTION TECHNIQUES
Outliers, or anomalies, are patterns in data that do not con-
form to a well-defined notion of normal behavior [30]. In this
paper, we mainly discuss two types of outliers: discrete out-
liers and event outliers. Discrete outliers refer to the outliers
that are distributed discretely and not correlated in time series.
They are usually generated by noise and errors in WSNs.
On the contrary, event outliers are distributed continuously in
time series and are generated by events in WSNs. In general,
event outliers can actually be described as a sequence of
errors or erroneous readings in a streaming data set. The six
categories of outlier detectionmodels forWSNs given by [10]
are as follows:

1) STATISTICAL-BASED
In [11], a Temporal Outlier Detection (TOD) algorithm based
on time-series analysis and geostatistics is proposed. It uti-
lizes an autoregressive model to predict the measurement at
the next moment and build a confidence interval. If the actual
measurement is not in the confidence interval, it is an outlier.
However, the form of a normal time series may change over
time. The update of the proposed model is not addressed.
In [12], an online detection approach based on a Segmented
Sequence Analysis (SSA) algorithm is proposed. A piecewise
linear model of time series sensor data is constructed by
SSA. The model is a two-layered distributed detection model
where the first layer is a local detection process at each node,
whereas the second layer is a centralized detection process at
the cluster head node. In [13], a distributed outlier detection
method based on credibility feedback in WSNs is proposed.
The method consists of three stages: evaluating the initial
credibility of sensor nodes, evaluating the final credibility
based on credibility feedback and Bayesian theorem, and
adjusting for the outlier set. However, by the message com-
plexity analysis, the energy consumption of this model is
large.

2) CLUSTERING-BASED
In [14], a global approach based on a distributed non-
parametric model is proposed. Each node clusters measure-
ments using a fixed-width clustering algorithm and sends
cluster results to its parent node. Then, the cluster head
merges its children’s cluster results and reports them to the
sink node. Finally, the sink node detects potential outliers.
If the average inter-cluster distance is greater than one stan-
dard deviation of the inter-cluster distance from the mean
inter-cluster distance, it is identified as an anomalous clus-
ter. In [15], a light-weight statistical detection method using
K-means clustering is proposed. It also takes into account of

sensor energy and processing power. In [16], a real-time out-
lier detection method in WSNs is introduced. The advantage
of the method is that it requires no prior knowledge of the
distribution of the data. However, the quality of the resulting
clusters has a significant impact on the performance of outlier
detection.

3) CLASSIFICATION-BASED
In [17], a threshold-free approach for outlier detection in
industrial wireless sensor networks (IWSNs) is proposed.
First, it utilizes the autoregressive model to obtain the
predicted measurement as same as [11]. Then, it maps
the residuals between actual measurements and predicted
measurements into a high-dimensional feature space using
one-class support vector machine (OCSVM). The OCSVM
classifies the input residuals without requiring any threshold.
In [18], another OCSVM-based method for outlier detection
is proposed. It reduces the computational complexity in the
training phase and the testing phase. However, if there are
outliers in the training set, the performance of OCSVM is
very poor. In [19], a two-layered outlier detection technique
based on sensor fusion using the hierarchical structure of
the network is proposed. The first layer uses the Bayesian
classifier at a sensor node, then the decisions of individual
sensor nodes are fused in the second layer to detect whether
eventually an outlier is in the sensed data. It aims at providing
an accurate outlier classification method that reducing com-
putational complexity and communication overhead.

4) SPECTRAL DECOMPOSITION-BASED
In [20], a hierarchical anomaly detection model in distributed
large-scale sensor networks is proposed. It exploits princi-
pal component analysis (PCA) to deal with outliers in data
generated by the faulty sensor. The technique develops a
model for the sensor data, and this model is used to detect
outliers in a sensor node through neighbor sensor nodes.
Since the technique requires the selection of the best model,
it is computationally expensive. In [21], a distributed out-
lier detection model based on one-class principal component
classifier (OCPCC) is proposed. It utilizes the spatial correla-
tions among sensor nodes in a neighborhood. For each node in
a cluster, a local normal reference model is constructed and
sent to the cluster head. A cluster head receives local refer-
ence models and combines them to obtain a global normal
reference model. The global normal reference model is sent
back to each node for outlier detection. However, the false-
positive rate for this model is high.

5) NEAREST NEIGHBOR-BASED
In [22], a local outlier factor (LOF) model is proposed. The
average distance from a measurement to its nearest neigh-
bors is denoted by d . The average of the nearest neighbors’
distances to their nearest neighbors is denoted by dn.
The LOF uses the ratio of d

dn
to detect outliers. In [23],

a k-nearest neighbor (k-NN) based outlier detection scheme
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forWSNs is proposed. The major intuition of this approach is
hyper-grid. Through redefining anomaly from a hypersphere
detection region (DR) to a hypercube DR, the computational
complexity is reduced significantly. However, it needs to be
validated on more datasets that possess dynamic changes in
the data distribution.

6) OTHERS
With the development of ensemble learning [29], several
methods [24], [25] based on the principle of isolation have
been proposed. The intrinsic characteristics of anomalous
data are fully considered to construct an outlier detector. It is
known that an outlier is an instance which possesses attribute
values different from normal measurements. In other words,
outliers are ‘‘few and different’’, which makes themmore iso-
lated than normal measurements. In [26], a distributed outlier
detection model based on isolation forest (iForest) for WSNs
is proposed. This model does not use any distance or den-
sity metrics for outlier detection. Instead, local detectors of
neighbor nodes are used to construct a global detector. The
isolation score of each measurement is calculated by a global
detector. However, since the iForest algorithm is insensitive
to local outliers which are similar to normal measurements,
the performance of this model is poor.

B. ISOLATION FOREST
In [25], a novel isolation method called Isolation For-
est(iForest) is proposed. It assumes that outliers are few and
different, and they are more susceptible to the isolation that
the normal measurements. It means that outliers possess a
sparse spatial distribution and are separated from a dense
region. In a feature space, measurements in sparse regions
are most likely to be outliers. Thus, it can be considered that
the measurements in these regions are outliers. If a dataset
is divided recursively and randomly, measurements in dense
regions are hard to be isolated, which means many iterations
are needed. On the contrary, measurements in sparse regions
that need fewer iterations to be divided are easily isolated.
To address this problem, iForest divides a dataset by a binary
tree, namely an isolation tree (iTree). Measurements with
shorter paths in an isolation tree are most likely to be outliers.
The definition of iTree is as follows.
Definition 1 (Isolation Tree): Let T be a node of an isola-

tion tree, and x be ameasurement in a dataset. T is either a leaf
node with no child, or a branch node with one test and exactly
two child node Tl and Tr . A test consists of an attribute q and a
split value p such that the test x.q < p divides a measurement
into Tl and Tr .

Given a data X = {x1, x2, · · · , xn}, there might be several
attributes. For an attribute q, we randomly choose a split
value p. The construction of an iTree is ended once one of
the following three conditions are satisfied:

1) The height of the tree reaches a limit l;
2) There is only one measurement in X , namely |X | = 1;
3) The values of the measurements are the same.

In general, the performance of outlier detection of a single
isolation tree is poor. Thus, the iForest consists of multi-
ple isolation trees. The construction of the iForest is shown
in Algorithm 1.

Algorithm 1 iForest(X , t, 9)
1: iForest ← ∅
2: l = ceiling(log29)
3: for i = 1 to t do
4: Xi = RandomSubset(X , 9)
5: ConstructiTreei
6: iForest = iForest ∪ {iTreei}
7: end for
8: return iForest

There are three parameters: the input measurements X ,
the number of iTrees t , and the number of measurements
contained in each iTree 9. In addition, the upper bound of
the height of the tree is calculated as l = ceiling(log29). The
measurements in X are divided into t subsets and the number
ofmeasurements in each subset is9. Then, the corresponding
iTree of each subset is constructed. Finally, the algorithm
returns the collection of iTrees, namely iForest.

In the detection phase of the iForest algorithm, the task is
obtaining a ranking of the outlier scores of the measurements,
namely the outlier scores are sorted in descending order. For a
pre-defined threshold, a measurement whose outlier score is
greater than the threshold is considered as an outlier. In other
words, the measurements at the top of the ranking list are
outliers. The outlier score of a measurement x is calculated
as

s(x, n) = 2−
E(h(x))
c(n) , (1)

where s(x, n) is the outlier score of measurement x, n is the
number of measurements in Xi. h(x) denotes the path length
of x, which is the number of edges from the root node to x.
For x, there are several values of h(x) corresponding to the
collection of iTrees in a iForest. E(h(x)) is the average of h(x)
corresponding to m iTrees, which is calculated as

E(h(x)) =
1
m

m∑
i=1

h(x). (2)

We employ the idea from Binary Search Tree(BST) to esti-
mate the average path length of an iTree. For the n measure-
ments in Xi, the average of path length of unsuccessful search
in BST is

c(n) = 2H (n− 1)−
2(n− 1)

n
, (3)

whereH (n) denotes the harmonic number which is estimated
by ln(n)+ 0.5772156649, and the constant 0.5772156649 is
the Euler’s constant. We use c(n) to normalize h(x).

C. LOCAL OUTLIER FACTOR
In [22], a classic outlier detection strategy called Local
Outlier Factor (LOF) is proposed. LOF is a density-based

96322 VOLUME 7, 2019



Z.-M. Wang et al.: Isolation-Based Distributed Outlier Detection Framework Using Nearest Neighbor Ensembles

FIGURE 1. An example of the reachability distance.

method. It calculates the local density of a particular mea-
surement and the local densities of the neighbors of the
measurement. If these densities are similar, it is assumed that
the particular measurement and its neighbors are in the same
region, that is, they are in the same cluster. Specifically, if the
average distance from a measurement to its nearest neighbors
is denoted by d , the local density of the measurement is 1

d .
If the average of the nearest neighbors’ distances to their
nearest neighbors is denoted by dn, the average local density
of the neighbors of the measurement is 1

dn
. The LOF is

defined as the ratio of d
dn
.

Definition 2 (k-Distance of a Measurement p): For any
positive integer k , the k-distance of a measurement p is
denoted as k-dist(p). In specific, the value of k-dist(p) is
equal to dist(p, o). dist(p, o) is the distance between p and
another measurement o ∈ D, such that: 1) dist(p, o′) 6
dist(p, o) holds for at least k measurements o′ ∈ D \ {p}, and
2) dist(p, o′) < dist(p, o) holds for at most k − 1 measure-
ments o′ ∈ D \ {p}.
By Definition 2, for a given k-dist(p), the measurement o

may be unique.
Definition 3 (k-Distance Neighborhood of a

Measurement p): Given the k-distance of a measure-
ment p, the k-distance neighborhood of a measurement
p refers to the measurements whose distances between
p are not greater than k-dist(p), namely Nk (p) =

{q ∈ D \ {p} |dist(p, q) 6 k-dist(p)}. These measurements q
are called the k-nearest neighbors of p.
Definition 4 (Reachability Distance of a Measurement p

With Respect to a Measurement o): Let k be a positive
integer. The reachability distance of a measurement p with
respect to a measurement o is defined as reach-distk (p, o) =
max {k-dist(o), dist(p, o)}.
As shown in Fig. 1, the dotted circle denotes the

k-distance neighborhood of a measurement o. Measurements
p1 and p2 are considered to be close to the measurement o.
Thus, p1 and p2 are in the k-distance neighborhood of o.
Namely, reach-distk (p1, o) = reach-distk (p2, o) = k-dist(o).

While the measurement p3 is considered to be far away
from o, thus the reachability distance of p3 and o is
simply the actual distance between them, namely
reach-distk (p3, o) = dist(p3, o). Therefore, the reachability
distance reach-distk (p, o) is at least the k-distance of o or the
actual distance between p and o. In this way, the statistical
fluctuation of dist(p, o) for all the measurements p which are
the neighbors of o can be significantly reduced. The strength
of this smoothing effect can be controlled by the parameter k .
The greater the value of k , the more similar the reachability
distances for measurements within the same neighborhood.
Definition 5 (Local Reachability Density of a

Measurement p): The local reachability density of a measure-
ment p is defined as the reciprocal of the average reachabil-
ity distance of measurement p in k-distance neighborhood,
which is calculated as

lrdk (p) = 1/

∑
o∈Nk (p) reach-distk (p, o)

|Nk (p)|
. (4)

The greater the density is, the more likely p and its neighbor-
hood belong to a same cluster.
Definition 6 (Local Outlier Factor of a Measurement p):

The local outlier factor of a measurement p is defined as

LOFk (p) =

∑
o∈Nk (p)

lrdk (o)
lrdk (p)

|Nk (p)|
. (5)

The local outlier factor of a measurement p is the mean
value of the ratio of the local reachability density of the mea-
surement p analyzed to the local reachability density of its
neighbors. The smaller the local reachability density of p and
the greater the local reachability density of the neighborhood
of p, the greater the value of LOFk (p). In specific, when
LOFk (p) ∈ (0, 1+σ ], p and its neighborhoods are belonged to
the same cluster. For LOFk (p) ∈ (1+σ,+∞), p is considered
as an outlier.

III. ISOLATION-BASED OUTLIER DETECTION
FRAMEWORK USING NEAREST
NEIGHBOR ENSEMBLES
A. PROBLEM STATEMENT
A wireless sensor network typically consists of a large num-
ber of sensor nodes scattered over a region of interest to
monitor specific physical phenomena. Sensor nodes may be
arranged to various kinds of topologies for different applica-
tions. A typical network topology is shown in Fig. 2: there are
totally seven clusters in the network and clusters are separated
by the dashed line. Each cluster has a cluster head node which
is denoted by a grey point. Other nodes are denoted by black
points. There is only one sink node, which is denoted by a
black circle. A communication link between a cluster head
node and the sink node is denoted by a dotted line.

To facilitate the description of our framework, we intro-
duce the definition of a sub-network in a wireless sensor
network.
Definition 7 (Sub-Network): A sub-network is one of the

clusters in the whole network, in which nodes can directly

VOLUME 7, 2019 96323



Z.-M. Wang et al.: Isolation-Based Distributed Outlier Detection Framework Using Nearest Neighbor Ensembles

FIGURE 2. A typical topology of WSN.

FIGURE 3. A sensor sub-network in WSN.

communicate with each other. Each node in the sub-network
does the same work such as data collection, communication,
and outlier detection. We denote a sub-network which con-
tains n sensor nodes by SN = {sn, sn1, · · · , snn−1}. The
sensor nodes densely deployed in a sub-network are homo-
geneous and time-synchronized. Thus, the sensor data in a
sub-network tends to be correlated both in space and time.

A illustrative example of a sub-network is shown in Fig. 3.
For a sensor node sn in a sub-network SN , the neighborhood
of sn is denoted by set N = SN \ sn, where |N | is n − 1.
Each sensor node in the sub-network produces an observation
vector consists of multiple attributes, which is denoted by
X = (x1, x2, · · · , xd ), where d is the number of attributes.
In this paper, we propose a new framework based on

the above sub-network to detect outliers for WSNs. In the
next subsection, we will first introduce our outlier detection
algorithm.

B. ISOLATION USING NEAREST NEIGHBOR ENSEMBLES
The main idea of the isolation using nearest neighbor ensem-
ble (iNNE) [31] is as follows. For an instance x in the training
set, the isolation of x is implemented by building a hyper-
sphere that only covers x. The radius of the hypersphere is
determined by the distance between x and its nearest neighbor
(NN) in the training set. Therefore, if x locates in a sparse
area, the corresponding hypersphere is large. On the contrary,

FIGURE 4. A random selected subset S of size 9 = 8.

if x locates in a dense area, the corresponding hypersphere
is small. In general, outlier instances appear in sparse areas,
while normal instances appear in dense areas. Thus, the radius
of the hypersphere can be used to detect outliers. The details
of the iNNE are as follows.

For a given dataset D ⊂ Rd , let ‖a− b‖ denotes the
Euclidean distance between a and b, where a, b ∈ Rd . For
instance x, the nearest neighbor(s) of x are denoted by a set
Nx = ηx1, ηx2, · · · , ηxn, where n > 1. For a subset S ⊂ D,
we denote 9 = |S|. Similar as iForest algorithm, 9 also
denotes the number of instances in a subset.
Definition 8: A hypersphere B(c) centered at c with the

radius of τ (c) = ‖c− ηc‖.
The hypersphere B(c) isolates c from the other instances

in S. Its radius τ (c) is ameasurement of the degree of isolation
of c. The larger the radius is, the more isolated c is, and
vice versa. We choose to use a local measurement to show
the degree of isolation, which considers the relative isolation
score of B(c) and B(ηc).
Definition 9: The isolation score for x ∈ Rd for set S is

I (x) =


1−

τ (ηcnn(x))
τ (cnn(x))

, if x ∈
⋃
c∈S

B(c)

1, otherwise ,
(6)

where cnn(x) = arg min {τ (c) : x ∈ B(c), c ∈ S}. As τ (ηcnn(x))
τ (cnn(x)) 6

1, I (x) is in the range of (−∞, 1]. When none of the hyper-
spheres covers x, then x is very far from all points in S. Thus,
I (x) is 1. If I (x) is very close to 1, x could be considered as
an outlier. Here, we give an illustrative example to illustrate
the iNNE algorithm.

As shown in Fig. 4, there is a random selected subset S
of 8 instances extracted from a dataset. Each instance of
this subset is used as the center of the hyperspheres created.
In addition, Fig. 4 also shows an example of hypersphere B(c)
created using c with radius τ (c).

As shown in Fig. 5, there are all the 8 hyperspheres created
for the subset S of 8 instances. This set of hyperspheres is
used for the calculating isolation scores for the 2 instances y,
z ∈ Rd . To compute the isolation score for z, 2 hyperspheres
need to be determined: the smallest hypersphere (has a center
at a) that covers z and the hypersphere centered at the NN of
a in the subset S. The isolation score I (z) is determined based
on the ratio of the radius of the two hyperspheres, namely,
τ (a) and τ (ηa). In contrast, instance y does not fall in any
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FIGURE 5. Isolation scores determined for y ,z .

hyperspheres. Thus, it obtains the maximum isolation score,
namely 1.
Definition 10: The iNNE has t sets of hyperspheres, which

are generated from t subsets Si, where i = 1, 2, · · · , t . The
t sets of hyperspheres are

{{B(c) : c ∈ Si} : i = 1, 2, · · · , t} . (7)

Definition 11: The outlier score for x ∈ Rd is defined as

Ī (x) =
1
t

t∑
i=1

Ii(x), (8)

where Ii(x) is the isolation score based on subset Si.
The isolation using nearest neighbor ensembles contains

two stages: training stage and evaluation stage. In the training
stage, t sets of hyperspheres are built from t subsets. The
number of elements of each subset is9. Details of the training
stage can be found in Algorithm 2. There are three input
parameters In Algorithm 2. D is a training dataset, 9 is the
size of a subset, and t is the number of subsets. Similar to the
iForest algorithm, the instances inD are divided into t subsets.
Then, the corresponding hyperspheres are constructed for
each instance in a subset by definition 8. Finally, the algo-
rithm returns the set of these hyperspheres, namely iNNE.
As we need to compute the distance between two instances,
the time complexity of the training stage is O(t92). The
memory complexity in the training stage is dominated by t
sets of hyperspheres, so the memory requirement is O(t9),
where t and9 are constants. Thus, iNNE in the training stage
has constant complexity.

Algorithm 2 iNNE_generation(D, t, 9)
1: iNNE ← ∅
2: for i = 1 to t do
3: Si = RandomSubset(D, 9)
4: Bi← ∅
5: for i = 1 to ‖Si‖ do
6: Bi = Bi ∪ {B(c)}
7: end for
8: iNNE = iNNE ∪ {Bi}
9: end for
10: return iNNE

In the evaluation stage, each test instance is evaluated
against t sets of hyperspheres in the iNNE. The isolation
scores are obtained by Definition 9, and the outlier scores
are obtained by Definition 11. The detailed process of the
evaluation stage can be seen in Algorithm 3. There are
two input parameters: evaluation model iNNE and evalua-
tion dataset DE . The algorithm outputs the outlier scores of
instances in DE . For a test set that contains n test instances,
a distance between each test instance and each instance in the
t training sets of hyperspheres needs to be calculated. Thus,
the time complexity and memory complexity of the evalua-
tion stage are both O(nt9), which is linear with respect to n.
Thus, iNNE in the evaluation stage has linear complexity.

Algorithm 3 iNNE_evaluation(iNNE,DE )
1: Score(DE )← ∅
2: for i = 1 to |DE | do
3: for j = 1 to iNNE .t do
4: Calculate Ij(x)
5: end for
6: Calculate I (x)
7: Score(DE )← Score(DE ) ∪ I (x)
8: end for
9: return Score(DE )

C. THE DISTRIBUTED DETECTION FRAMEWORK BASED
ON INNE FOR WSNS
In this subsection, we will introduce our distributed detection
framework based on iNNE for WSNs. In order to reduce
the communication burden in WSNs, each sensor node pos-
sesses a local outlier detector based on training datasets.
Each sensor node broadcasts the information given by its
local detector to its neighbor sensor nodes. This information
includes hypersphere structures and current measurements.
The operation of the global detector of a sensor node is based
on the information of its local detector and the information
from all its neighbor sensor nodes. As shown in Fig. 6, sn is a
sensor node of the sub-network and its neighbor sensor nodes
are sn1, sn2, sn3, and sn4. The detection of outliers in sn is
conducted by the global detector.

Specifically, Fig. 7 depicts our proposed framework, which
is divided into three phases: training phase, detection phase,
and update phase.

1) TRAINING PHASE
Before the on-line detection, off-line training is performed
to obtain an initial outlier detector. In this phase, a local
detector is constructed using the historical measurements
of each sensor node based on the iNNE. The local detec-
tors constructed during the training phase are used to con-
struct global detectors by various combinations, such as
weighted voting [32], bagging [33], and stacked general-
ization [34]. Among them, the weighted voting scheme is
suitable for large-scale integration. It is usually used when the
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FIGURE 6. An abstract view of the proposed model.

FIGURE 7. Three phases of the proposed framework.

performance of an individual local detector varies signifi-
cantly. For bagging and stacked generalization, a lot of com-
putations are needed, which is a heavy load for wireless sen-
sor networks. Thus, we propose a new combination method
based onweighted voting to combinemultiple local detectors.
The principle of voting is that multiple detectors process the
same input in parallel, then the outputs are combined based
on the spatial correlations among sensor nodes. The actual
distances between sensor nodes are used as the weight. The
closer the distance is, the greater the weight of the neighbor
sensor is, and vice versa. The details of the weight setting
are described in the detection phase. Since the voting method
just requires the transmission of the current measurements
of neighbor nodes, the broadcast of the hypersphere struc-
tures of local detectors is avoided. This feature significantly
reduces the amount of data transmission. The procedure of
the training phase is the same as the Algorithm 2, where the
datasetD refers to the historical measurements of each sensor
node.

2) DETECTION PHASE
The detection phase is carried out online at each node. The
initial detector of the training phase is used at the beginning
of the detection phase. As time goes on, the update of the
detector effectively maintains the accuracy of our framework.
To effectively detect outliers in our framework, we propose a
new combination method based on weighted voting to com-
bine local detectors. In specific, when a new measurement x
is obtained by sensor node sn, the local detector of sn cal-
culates its outlier score. Meantime, the new measurement x
is broadcasted to the neighbor sensor nodes of sn. The local
detectors of the neighbors calculate the outlier scores. Then
the neighbors send the outlier scores and the positions of the
neighbors back to sn. Finally, the global outlier score of x is
calculated as

Ig(x) =
wI (x)+

∑n
i=1 wiIi(x)

w+
∑n

i=1 wi
. (9)

In (9), n is the number of neighbor sensor nodes.
Ii(x) is the outlier score calculated by the local detector
of the neighbor sensor node sni. I (x) is the outlier score
calculated by the local detector of sensor node sn. wi is
the weight of the neighbor sensor node sni, it is denoted
based on the Euclidean distance between sn and sni which
is the reciprocal of ‖pos− posi‖. Namely, wi = 1

‖pos−posi‖
.

w is the weight of sensor node sn, it is calculated as w =∑n
i=1 wi. For w,w1,w2, · · · ,wi, · · · ,wn, we set the weight

of sn to the sum of the weights of all neighbor sensor nodes.
By Definition 9, I (x) is in the range of (−∞, 1]. Thus,
the global outlier score Ig(x) which is similar to I (x) in (6)
is also in the range of (−∞, 1]. Then, a measurement x is
determined by the following principles, where σ is a small
positive number.

1) If Ig(x) is close to 1, which also means that if Ig(x) ∈
[1− σ, 1], then x is an outlier;
2) If Ig(x) 6 0, then x is a normal measurement;
3) If Ig(x) ∈ (0, 1 − σ ), then x is either an outlier or a

normal measurement.
However, in most cases, the obtained global outlier score

is in the range of (0, 1− σ ). Therefore, it is not necessary to
choose the value of σ . We directly introduce a threshold p to
label a measurement x:

label(x) =

{
0, if Ig(x) < p
1, if Ig(x) > p,

(10)

where 0 indicates a normal measurement, while 1 refers to an
outlier. In practice, the threshold p has a great effect on the
results of outlier detection. However, the value of p is always
unknown and this is a non-trivial problem. In fact, a roughly
estimated range is given based on prior knowledge. In this
paper, the value of p is investigated by experiments.
The detailed detection phase is shown in Algorithm 4.

There are seven parameters. For sensor node sn, x is a new
measurement, LD is the local detector and LDi is the local
detector of a neighbor sensor node sni. pos refers to the real
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FIGURE 8. The sliding window.

position of sn, while posi refers to the real position of sni. n is
the number of neighbor sensor nodes of sn. p is the threshold.

Algorithm 4 Detection(x,LD,LDi, pos, posi, p, n)
1: I (x)← iNNE_evaluation(LD, x)
2: for i = 1 to n do
3: Ii(x)← iNNE_evaluation(LDi, x)
4: wi = 1

‖pos−posi‖
5: end for
6: return (Ig(x) > p)?1 : 0

3) UPDATE PHASE
The update phase retrains the outlier detection model for
the purpose of adapting the dynamic changes of sensor data.
In specific, we employ a sliding window to process sensor
data. The size of the window is fixed. Briefly, every time the
sliding window is filled with a new group of data, the outlier
detectionmodel is retrained. Thus, themodel is highly consis-
tent with the recent data distribution. This feature effectively
improves the accuracy of detection.

As shown in Fig. 8, the data stream is represented by a
series of circles x1, x2, · · · , xn. For simplicity, the size of the
sliding window is four. There are totally six states of the
sliding window. The initial state of the slide window is sw0,
which is an empty window. At this time, the corresponding
detection model is DM0, which is able to calculate a global
outlier score Ig(x). The sw1 contains one measurement x1.
For sw1, the corresponding detection model is also DM0.
Thus, x1 is detected by DM0. If x1 is an outlier, it is removed
from sw1. On the contrary, if x1 is a normal measurement,
it is retained in sw1. Actually, for swi, i = 1, 2, 3, 4, the cor-
responding detection model is DM0. For sw4, if x4 is not an
outlier, the sliding window is full. Then, the detection model
is retrained by Algorithm 2 using x1, x2, x3, and x4. The
new detection model is denoted by DM1. Then, the sliding
window is emptied. Namely, the corresponding detection
model of sw5 is DM1. Every time the sliding window is full,
the detection model is retrained.

The detailed update phase is shown in Algorithm 5. There
are four parameters. x is a vector that contains n measure-
ments and m is the size of the sliding window. LD is the local
detector. And buffer stores normal measurements which are
used to retrain the local detector.

Algorithm 5 Update(x,m,LD, buffer)
1: for i = 1 to n do
2: if buffer .length < m then
3: if Ig(xi) < p then
4: buffer ← buffer ∪ xi
5: end if
6: break
7: else
8: LD← iNNE_generation(buffer,LD.t,LD.9)
9: buffer ← ∅
10: end if
11: return LD
12: end for

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate the effectiveness of our frame-
work. Experiments are conducted on a personal PC with Intel
Core i5-4200M 2.50 GHz, which runsMicrosoftWindows 10
Professional (64-bit) with 8GB RAM. Meanwhile, the fol-
lowing software utilities are used for the preparation of data
samples, implementation of algorithms and the analysis of the
results: Matlab R2016a.

A. DATASET
Two datasets are used to evaluate the proposed framework:
ISSNIP [35] and IBRL [36].

1) ISSNIP
The Intelligent Sensors, Sensor Networks & Information
Processing(ISSNIP) dataset is a real humidity-temperature
sensor data that is collected using TelosB motes in a
single-hop WSNs. This dataset has controlled outliers, and
all the data in the dataset are labeled. There are totally
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TABLE 1. Summary of the ISSNIP dataset.

FIGURE 9. The deployment of sensor nodes in IBRL.

four sensor nodes: two indoor sensor nodes and two outdoor
sensor nodes. The data consists of temperature and humidity
measurements collected over a period of 6h at the interval
of 5s. In order to generate outliers, a hot-water kettle is used
to increase the temperature and the humidity simultaneously.
Thus, all outliers in ISSNIP are event outliers since they are a
sequence of errors or erroneous readings caused by an event
in the dataset. The summary of the dataset is shown in Table 1.

2) IBRL
The Intel Berkeley Research Lab (IBRL) dataset is based
on the publicly available Intel Lab Data consisting of real
measurements collected from 54 sensors deployed at the
Intel Berkeley Research Lab. Mica2Dot sensors with weath-
erboards collected timestamped topology information, along
with humidity, temperature, light and voltage values once
every 31 seconds. The deployment of sensor nodes in
IBRL is shown in Fig. 9 [36].

We consider five sensor nodes 1, 2, 33, 35, and 37 in the
WSN and select the temperature and humidity measurements
recorded from Feb. 28 to Feb. 29, 2004. As these data are
not annotated and contain no labeled information, a data pre-
processing is needed before the evaluation. Firstly, the data is
manually cleaned by removing spuriousmeasurements (obvi-
ously, extreme values are outliers) with the help of a scatter
diagram. The cleaned data are labeled as normal. Secondly,
artificial outliers which are normally distributed are randomly
injected to the normal data for each node. The amount of
injected outliers are 3% of the normal measurements. In addi-
tion, they are manually labeled as outliers. Without loss of
generality, we make the differences in the mean and standard
deviation between the artificial outliers and the normal data
are slight. For example, in sensor node 1 of IBRL dataset,
the mean temperature of normal data is 21.03 and the stan-
dard deviation of them is 2.44. Then we choose the mean

TABLE 2. Summary of the preprocessed IBRL dataset.

temperature of artificial outliers to 21.03 + 1 and choose the
standard deviation of them to 2.44 + 0.5. Finally, the arti-
ficial outliers are generated using the normal random distri-
bution function based on these two values, namely, Artificial
outliers = f (22.03 + 1, 2.44 + 0.5, n), where f is the ran-
dom number generator based on the normal measurements’
distribution, n is the number of desired artificial outliers.
As the outliers in IBRL are generated randomly, most of
them are discrete outliers. The summary of the preprocessed
IBRL dataset is shown in Table 2.

B. PERFORMANCE METRICS
In order to evaluate our proposed framework, we select three
performance metrics: accuracy rate (ACC), detection rate
(DR), and false alarm rate (FAR). They are calculated as

ACC =
TN+ TP

TN+ FP+ TP+ FN
× 100% (11)

DR =
TP

FN+ TP
× 100% (12)

FAR =
FP

TN+ FP
× 100%, (13)

where TP, FP, TN, and FN denote the number of correctly
detected outliers, the number of normal measurements which
are wrongly detected as outliers, the number of correctly
detected normal measurements, and the number of outliers
wrongly detected as normal, respectively.

Another metric is Area Under Curve (AUC). Compared
with ACC, DR, and FAR, AUC objectively reflects the ability
of a detector regardless of the value of threshold. The AUC is
calculated as

AUC =

∑M
i=1 ri −

M×(M+1)
2

M × N
, (14)

where M and N denote the numbers of outliers and normal
measurements labeled before the experiments, respectively.
The outlier scores of the M + N measurements are sorted in
ascending order. The ri is the index of the i-th pre-labeled
outlier.

C. EXPERIMENTS AND ANALYSIS
1) EVALUATION OF iNNE
In order to evaluate the performance of the iNNE,we compare
it with iForest [25] and LOF [22] in terms of detection accu-
racy and sensitivity to the parameter selection. In specific,
70% data of the ISSNIP dataset are used for training. The
other 30% data are used for evaluating.
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FIGURE 10. AUC for the iNNE and the iForest.

Since the iNNE inherits the concept of isolation from iFor-
est, the two algorithms have the same parameters:the number
of subsets t and the size of subsets9. In specific, the number
of subsets t = 50, 100, and 200; the size of subsets 9 = 2,
4, 8, 16, 32, 64, and 128. The AUC and training time for the
two algorithms are depicted in Fig. 10 and Fig. 11.

As shown in Fig. 10, the subset size 9 is the number of
measurements in a subset. For the iForest algorithm, the value
of log9 is the height of the iForest. When the subset size
9 ∈ [2, 32], the value of AUC increases with an increase
of 9. For 9 > 32, the value of AUC keeps at 1. The
higher the iTree, the more detailed the measurements in the
dataset are divided. Thus, the outlier detection performance
of iForest improves with the increase of9. In addition, we set
the number of iTrees in the iForest as for t = 50, 100, 200.
In general, the outlier detection performance of the iForest
improves with the increase of t . However, some iTrees in
the iForest are likely to be similar. Thus, the improvement
is not significant. For the iNNE algorithm, the values of AUC
for t = 50, 100, 200 keep at 1 when the subset size 9 ∈
[2, 256]. Thus, the iNNE outperforms the iForest. Besides,
the performance of the iNNE is insensitive to the number of
subsets t and the subset size 9. On one hand, the calculation
of the outlier score in the iNNE algorithm uses the distances
between the measurements, while the iForest algorithm uses
the path lengths in the iForest. Thus, the iNNE does not
require a lot of measurements to construct the tree struc-
ture in the iForest. On the other hand, when the number of
measurements is small, distance is more important than path
length in terms of reflecting the degree of the anomaly for a
measurement. Thus, the iNNE outperforms the iForest when
9 is small, namely 9 ∈ [2, 32]. With the increase of the
subset size 9, the distance between a measurement and its
nearest neighbor in a larger subset is more reflective than a
small subset in terms of the degree of the anomaly. Thus,

FIGURE 11. Training time for the iNNE and the iForest.

for the iNNE algorithm, the value of AUC keeps at 1 for
9 ∈ [2, 256].

As shown in Fig. 11, with an increase of 9, the train-
ing times of both the iNNE and the iForest are increasing.
As mentioned above, the time complexities of the iNNE
and the iForest are O(t92) and O(t9), respectively. When
2 6 9 < 32, the difference of the training times between
the iNNE and the iForest can be considered as slight. For
9 > 32, the training time of the iNNE increases dramatically
than that of the iForest. Similarly, With the increase of t ,
the training times of both the iNNE and the iForest are also
increasing. Furthermore, for a small value of 9 (e.g. 2 6
9 6 16), the iNNE possesses a good outlier detection per-
formance with short training time. In addition, the memory
requirement of the iNNE for a small 9 is also small. Thus,
it can be considered that the iNNE is a light-weight outlier
detection algorithm.

To conduct a further investigation of our framework,
we compare the iNNE with the Local Outlier Factor (LOF).
The reason why we choose LOF is that both the iNNE and
the LOF are based on the idea of the nearest neighbor. The
parameter k in the LOF refers to a positive integer which is
used to define the k-distance and the k-distance neighborhood
of a measurement. The greater the value of k , the more
measurements are in the k-distance neighborhood. Therefore,
the role of the parameter k in the LOF and the parameter 9
in the iNNE are similar. For the iNNE, we set t = 50. The
AUC and the training time for the two algorithms are depicted
in Fig. 12 and Fig. 13, respectively.

As shown in Fig. 12, with an increase of k , the AUC of the
LOF increases until it reaches 1. This is because the greater
the value of k is, the more measurements are in the k-distance
neighborhood. In this case, the local densities of the mea-
surements in the LOF are more accurate. Thus, the AUC of
LOF improves. For the iNNE, as it uses the subset ensembles
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FIGURE 12. AUC for the iNNE and the LOF.

FIGURE 13. Training time for the iNNE and the LOF.

which improve the performance of outlier detection, the value
of the AUC is greater than 0.95 for9 ∈ [10, 100]. Therefore,
the performance of the iNNE is better than the LOF in most
cases.

As shown in Fig. 13, with an increase of 9, the training
time of the iNNE increases dramatically. On the contrary,
the training time of the LOF maintains a relatively steady
trend with some fluctuations. This is because the time com-
plexity of the iNNE is O(t92), while the time complexity of
the LOF is mere O(n2).
Here, n in the LOF is the number of measurements in

the dataset. Thus, the time complexity is irrelevant to the
parameter k . In addition, when9 is smaller than 30, the train-
ing time of the iNNE is shorter than that of the LOF.
This is because O(t92) is smaller than O(n2) when 9 is
small. With the increase of 9, O(t92) becomes greater

FIGURE 14. ACC, DR, and FAR for different thresholds.

thanO(n2). Thus, when9 is greater than 30, the training time
of the iNNE is greater than that of the LOF. In a nutshell,
the iNNE outperforms the LOF when 9 is small; while a
large9 indicates a better performance of the iNNE instead of
the LOF.

2) EVALUATION OF OUR PROPOSED FRAMEWORK
In order to evaluate the effectiveness of our proposed frame-
work, we conducted extensive experiments on the ISSNIP
dataset and the IBRL dataset. In addition, an improved
isolation-based distributed outlier detection framework [26]
is used to compare with the proposed framework.
Evaluation on ISSNIP Dataset: As mentioned above,

the threshold p has a significant impact on the detection
framework. If p is not appropriate, it will cause a large
deviation and reduce the reliability of our framework. Thus,
we first discuss the value of the threshold of p by experiments.
We select 500 measurements from the ISSNIP dataset to
evaluate the effectiveness of our framework with the different
thresholds of p. The experimental results are shown in Fig. 14.
As shown in Fig. 14, with the increase of threshold p,

the value of FAR is decreasing. When the threshold p ∈
[0.1, 0.8], the value of DR decreases slightly while the value
of ACC increases significantly with an increase of p. When
the value of threshold p is set to 0.9, the values of ACC
and DR decrease. Thus, when the value of the threshold p
is small, though the value of ACC is 100%, the value of
FAR is high and the ACC is low. It means that there are
many normal measurements are detected as outliers. On the
contrary, when we set a large value of threshold p, the values
of DR andACC are low. This is because that many outliers are
not be detected. An appropriate threshold of p should enable
our framework to achieve high ACC and DR with low FAR.
In experiments, when p is set to 0.8, the value of ACC is the
best. In addition, the DR and FAR also have good results.
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TABLE 3. Experimental results on ISSNIP dataset (indoor).

TABLE 4. Experimental results on ISSNIP dataset (outdoor).

Therefore, the threshold p of our framework is set to 0.8 in
the following experiments.

Due to that ISSNIP dataset is divided into indoor and
outdoor, we consider node 1 and node 2 as a sub-network,
and node 3 and 4 as another one. Since there are outliers only
in node 1 and node 4. So we evaluate the effectiveness of
our framework and [26] in node 1 and node 4 with different
parameter combinations. For the number of subsets t , its value
is set as 100 for the two frameworks. Similarly, for window
size m, its value is set as 100,200 and 300. Subset size 9 is
set to 64,128,256 and threshold p is set to 0.7 in [26]. While
in our framework, 9 is set to 8,16,32 and p is set to 0.8.
The experimental results for node 1 and node 4 are shown
in Table 3 and Table 4. The bold-faced values are the best-
reported results in all the window sizes.

As shown in Table 3, it can be seen that when the window
size is set to 200, the proposed framework and [26] have
their best results in DR. The DR of the proposed framework
is 100%, whereas [26] is 68.4%. In this case, our framework
also outperforms [26] in ACC and FAR. When the window
size is 100 or 300, our framework has good values for ACC
and FAR, while DR is very low. While the performance
of [26] is poor. The ACC is lower than 80% and the DR is
lower than 50%. Thus, our framework is better than [26].

As shown in Table 4, our framework and [26] both perform
well in ACC, which are higher than 90% in all the window
sizes. Moreover, our framework has good results for all the
performance metrics with different combinations of parame-
ters. Especially, when the window size is 100 and the subset
is 32, all the performance metrics are the best in Table 3.

While for [26], though the ACC is high and FAR is low,
the DR keeps around 60%, which is much lower than the DR
of iNNE. Thus, our framework is better than [26].

Furthermore, Table 3 and Table 4 show that the results of
the proposed framework are mainly affected by the window
size and insensitive to the subset size. For example, when the
window size is 200 in Table 3, the DR of our framework
is 100% all the time with the change of subset size. Its
ACC and FAR have slight changes in this case. In addition,
[26] behaves badly in these two nodes. This is because the
outliers are generated by an event in the ISSNIP. Since [26]
based on iForest is insensitive to the outliers generated by
the event, it has a poor performance. On the contrary, our
framework based on iNEE has good results. It proves that our
framework outperforms [26] in detecting event outliers.
Evaluation on IBRL Dataset:We repeated the experiments

on the IBRL dataset from 5 nodes in the WSNs. And [26]
is still used to compare with our framework for different
window sizes. The value of t is set to 100, subset size 9 and
threshold p are both set to the same values of the experiments
on the ISSNIP dataset. The results of [26] and our framework
on IBRL dataset are presented in Table 5. The bold-faced
values are the best-reported results for each node in the table.

As shown in Table 5, the results indicate that all the per-
formance metrics of both our framework and [26] get worse
with the increase of window size. For node 1, as window
size increases, the ACC of our framework decreases from
97.7% to 78.9%, DR decreases from 96.4% to 78.6%, and
FAR increases from 2.3% to 21.4%. Similarly, the ACC and
DR of [26] decrease significantly while FAR increases. Thus,
the two frameworks both perform best when the value of
window size is 100. In addition, the results in Table 5 also
show that our framework outperforms [26] for all nodes in
terms of detection accuracy. For node 2, when window size
is 100, the ACC of [26] is 91.7%, DR is 97.0%, and FAR
is 8.4%. Whereas the ACC of our framework is 99.9%, DR
is 97.7%, and FAR is 0%, which is a satisfactory result for
outlier detection.

Furthermore, all the performancemetrics of our framework
and [26] on the IBRL dataset perform much better than that
metrics on the ISSNIP dataset. This is due to outliers in the
IBRL dataset are randomly generated at a different time and
most of them are discrete outliers. Since our framework and
[26] both belong to isolation-based frameworks and are sensi-
tive to these discrete outliers, they perform well on the IBRL
dataset. In conclusion, our framework is able to detect dis-
crete outliers and event outliers. And it performs better than
the existing isolation-based outlier detection frameworks.

To show the viability in performance effectiveness of the
combination methods in our framework, we compared the
detection performances between a local detector and a uni-
form weight strategy. For IBRL dataset, we set the value of
window size is 100, the number of subsets t is set to 100,
subset size 9 is set to 8, and threshold p is set to 0.7. The
performances of different combinationmethods are presented
in Table 6, Table 7, and Table 8.
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TABLE 5. Experimental results on IBRL dataset.

TABLE 6. ACC on IBRL dataset for three combination methods.

TABLE 7. DR on IBRL dataset for three combination methods.

TABLE 8. FAR on IBRL dataset for three combination methods.

The results shown in Table 6 illustrates that our combina-
tion method achieves the best ACC of 97.5% which better
than the local and uniform combination methods. Similarly,
Table 7 shows that an average of 96.0% DR is achieved
with our combination method. And it outperforms the aver-
age DR of local and uniform combinations. In general, our
framework with uniform and our combination method show
an improvement over the local method. Among all three
combination methods, our combination method shows the
best performance in ACC and DR for our framework.

Finally, Table 8 shows the average of FAR of all combina-
tion methods. Our combination method has the FAR of 2.3%
which outperforms other combination methods. This is due
to our combination method considers the spatial correlation
of sensor nodes and uses the actual distances among them

to combine local detectors. Thus, it can effectively reduce
the FAR. For the uniform combination method and the local
detector, the difference of the FAR is slight. In a word,
the proposed combination method effectively improves the
ACC and the DR while significantly reduces the FAR.

V. CONCLUSION
In this paper, we proposed an isolation-based distributed out-
lier detection framework to detect outliers for wireless sensor
networks. Our framework mainly solves three drawbacks of
the exiting distributed outlier detection frameworks. The first
one is the size growth of a local detectionmodel in the training
and detection phases which introduces extra computation
and communication burden. In order to reduce resource con-
sumption, we proposed a local detection model based on the
iNNE algorithm. The second one is the poor performance of
combination methods for local models. We introduced a new
combination method based on the weighted voting method.
The third one is the bad adaptability of dynamic changes
in the environments for the existing frameworks. A self-
adaptive algorithm based on a sliding window is developed
in our local detection model. Extensive experiments on the
ISSNIP dataset and the IBRL dataset show that the iNNE
algorithm performs well for outlier detection. Though it has a
similar training time with the iForest algorithm and the LOF
algorithm, the detection performance of the iNNE is better
than the other two algorithms. In addition, our framework
outperforms a famous existing isolation-based framework in
terms of ACC, DR, and FAR. Finally, we compared our
combination method with local and uniform combination
methods. The results show the proposed combination method
effectively improves the ACC and the DR while significantly
reduces the FAR. However, there are some shortages in our
framework. The threshold and the size of the sliding window
are predefined and fixed. In a real application, these values
are hard to determine in advance and inappropriate values
have a negative effect on the performance of the framework.
Thus, a self-adaptive strategy which is able to adjust the
threshold and window size of the detection framework is
needed.
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