EXAMEN PROBABILITÉS/STATISTIQUE - 2GEA

Vendredi 17 Novembre 2017

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (5 points)

On considère une variable aléatoire X continue de densité de probabilité

$$p(x) = \begin{cases} 2x \text{ si } x \in]0, 1[\\ 0 \text{ sinon.} \end{cases}$$

- 1. Déterminer la loi de $Y=X^2$ en effectuant un changement de variables et reconnaître cette loi dans la table de lois.
- 2. Déterminer la fonction de répartition de la variable aléatoire X. En déduire la fonction de répartition de Y et retrouver le résultat de la première question.
- 3. Déterminer la fonction caractéristique de la variable aléatoire Y en utilisant la loi de X. En utilisant les tables de lois, montrer qu'on peut retrouver la loi de Y trouvée aux questions précédentes.

Exercice 2 (5 points)

On considère deux variables aléatoires indépendantes X et Y de lois uniformes sur l'intervalle]0,1[, c'est-à-dire de densités

$$p(x,.) = \left\{ \begin{array}{l} 1 \text{ si } x \in \left]0,1\right[\\ 0 \text{ sinon.} \end{array} \right. \quad p(.,y) = \left\{ \begin{array}{l} 1 \text{ si } y \in \left]0,1\right[\\ 0 \text{ sinon.} \end{array} \right.$$

L'objectif de cet exercice (fait en cours) est de déterminer la loi de la variable aléatoire Z = X + Y.

- 1. Déterminer la loi du couple (Z,T) avec T=X en effectuant un changement de variables. Représenter graphiquement le domaine de définition du couple (Z,T).
- 2. En déduire la loi de Z.

Exercice 3: Estimation (5 points)

On considère des variables aléatoires X_i indépendantes et de même loi de Bernoulli de paramètre θ

$$P[X_i = x_i; \theta] = \theta^{x_i} (1 - \theta)^{1 - x_i}, \quad x_i \in \{0, 1\}$$

où $\theta > 0$ est un paramètre inconnu. On remarquera qu'avec cette définition $P[X_i = 0] = 1 - \theta$ et $P[X_i = 1] = \theta$ et que les variables X_i sont à valeurs dans $\{0, 1\}$.

- 1. Déterminer la vraisemblance de l'échantillon $(X_1,...,X_n)$ et montrer qu'elle admet un maximum global unique pour une valeur de θ que l'on précisera. En déduire l'estimateur du maximum de vraisemblance du paramètre θ noté $\hat{\theta}_{MV}$.
- 2. L'estimateur $\hat{\theta}_{MV}$ est-il sans biais et convergent ?
- 3. Déterminer la borne de Cramér-Rao pour les estimateurs non-biaisés de θ . L'estimateur $\hat{\theta}_{MV}$ est-il l'estimateur efficace du paramètre θ ?

Exercice 4: Test statistique (5 points)

On considère une suite de variables aléatoires X_i indépendantes et de même loi de Bernoulli de paramètre θ

$$P[X_i = x_i; \theta] = \theta^{x_i} (1 - \theta)^{1 - x_i}, \quad x_i \in \{0, 1\}$$

où $\theta > 0$ est un paramètre inconnu. On remarquera qu'avec cette définition $P[X_i = 0] = 1 - \theta$ et $P[X_i = 1] = \theta$ et que les variables X_i sont à valeurs dans $\{0, 1\}$. On désire tester les deux hypothèses

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases}$$

- 1. Montrer que la statistique du test de Neyman-Pearson peut s'écrire $T = \sum_{i=1}^{n} X_i$ et déterminer la région critique associée dans les deux cas $\theta_1 < \theta_0$ et $\theta_1 > \theta_0$.
- 2. On suppose que n est suffisamment grand pour appliquer le théorème de la limite centrale à la variable aléatoire T et on se place dans le cas $\theta_1 < \theta_0$.
 - \bullet Quelle est la loi approchée de T résultant de l'application de ce théorème ?
 - En utilisant la loi approchée de T trouvée à la question précédente, déterminer le risque de première espèce α en fonction du seuil du test noté S_{α} , de n, θ_0 et de la fonction de répartition de la loi normale $\mathcal{N}(0,1)$ notée F. Toujours à l'aide de la loi approchée de T trouvée à la question précédente, en déduire la puissance du test π en fonction du seuil du test noté S_{α} , de n, θ_1 et de la fonction F.
 - En déduire les courbes COR de ce test.

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0,1,,n\}$	np	npq	$(pe^{it}+q)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$\frac{ u}{\theta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1 - i\frac{t}{\theta}\right)^{\nu}}$
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi\lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, b > 0, x \in]0,1[$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)