EXAMEN PROBABILITÉS - 1SN

Lundi 23 Octobre 2023 (8h00-9h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : lois de Bernoulli (6 points)

On considère deux variables aléatoires indépendantes X et Y de même loi de Bernoulli, i.e., telles que

$$P[X = 1] = P[Y = 1] = p \text{ et } P[X = 0] = P[Y = 0] = q = 1 - p.$$

avec $p \in]0,1[$

- 1. Déterminer la loi du couple (U,T) avec U=XY et T=X. En déduire la loi marginale de U.
- 2. Déterminer la covariance et le coefficient de corrélation du couple (U,T). Les variables U et T sont-elles indépendantes ?
- 3. Déterminer la loi conditionnelle de T|U=0.
- 4. Déterminer la fonction caractéristique de X. En utilisant le théorème des espérances conditionnelles, déterminer la fonction caractéristique de U=XY. Retrouver la loi de U déterminée à la première question.

Exercice 2 : changement de variables continues (9 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p(x,y) = \frac{|x|}{2\pi\sqrt{3}} \exp\left[-\frac{1}{6}x^2(1+3y^2)\right], (x,y) \in \mathbb{R}^2$$

- 1. Déterminer les lois marginales de X et de Y.
- 2. On effectue le changement de variables U = XY et T = X. Montrer que (U, T) est un vecteur gaussien dont on déterminera le vecteur moyenne m et la matrice de covariance Σ . En déduire les lois marginales de U et de T. Les variables U et T sont-elles indépendantes ?
- 3. Déterminer la covariance du couple (X, Y). Les variables X et Y sont-elles indépendantes?
- 4. Exprimer V = X(1+Y) en fonction de T et U et en déduire la loi de V.

Exercice 3: Vecteur Gaussien (6 points)

On considère un vecteur Gaussien $(X,Y)^T \in \mathbb{R}^2$ de vecteur moyenne μ et de matrice de covariance Σ (supposée symétrique définie positive). L'objectif de cet exercice est de montrer que la moyenne de la variable aléatoire Y|X est définie par

$$E(Y|X) = E(Y) + \frac{\text{cov}(X,Y)}{\text{var}(X)} [X - E(X)].$$

- 1. Rappeler l'expression des éléments de Σ en fonction de var(X), var(Y) et cov(X,Y).
- 2. Montrer que le vecteur $\boldsymbol{V}=(X,Z)^T$ avec Z=Y-u(X) et $u(X)=E(Y)+\frac{\operatorname{cov}(X,Y)}{\operatorname{var}(X)}[X-E(X)]$ s'écrit $\boldsymbol{V}=\boldsymbol{A}(X,Y)^T+\boldsymbol{b}$ avec une matrice \boldsymbol{A} et un vecteur \boldsymbol{b} que l'on précisera. En déduire que \boldsymbol{V} est un vecteur Gaussien dont on déterminera le vecteur moyenne et la matrice de covariance. Expliquer pourquoi les variables X et Z=Y-u(X) sont indépendantes.
- 3. En utilisant la relation Y = Z + u(X) et le fait que Z et X sont des variables aléatoires indépendantes, montrer que E(Y|X) = E(Z) + u(X) et conclure.

LOIS DE PROBABILITÉ DISCRÈTES

$$p_k = P[X = k]$$
 $p_{1,...,m} = P[X_1 = k_1, ..., X_m = k_m]$

LOI	Probabilités	Moyenne	Variance	Fonction Caractéristique
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = \binom{n}{k} p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0, 1,, n\}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$	np	npq	$\left(pe^{it} + q\right)^n$
Binomiale négative	$p_k = \binom{n-1}{n+k-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1}p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES

LOI	Densité de probabilité	Moyenne	Variance	Fonction Caractéristique
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$\frac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1}$ si $\nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_p\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = Ke^{-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)}$ $K = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}}$ $x \in \mathbb{R}^p$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ $\chi^2_ u$ $\Gamma\left(rac{1}{2},rac{ u}{2} ight)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$ \nu \in \mathbb{N}^*, \ x \ge 0 $ $ f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)} $ $ \lambda > 0, \ \alpha \in \mathbb{R} $	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)