EXAMEN PROBABILITÉS - 1MF2E

Lundi 22 Octobre 2018 (8h-9h45)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1: (5 points)

On considère trois variables aléatoires (mutuellement) indépendates X_1, X_2 et X_3 de lois de Poisson de paramètres λ_1, λ_2 et λ_3 , ce que l'on notera

$$X_1 \sim \mathcal{P}(\lambda_1), X_2 \sim \mathcal{P}(\lambda_2) \text{ et } X_3 \sim \mathcal{P}(\lambda_3)$$
 (1)

avec $\lambda_1>0,\,\lambda_2>0$ et $\lambda_3>0.$ On définit alors les variables aléatoires Z et T comme suit

$$Z = X_1 + X_2 \text{ et } T = X_2 + X_3.$$
 (2)

- 1. Déterminer la fonction caractéristique de Z et en déduire les lois de Z et T.
- 2. Déterminer la covariance et le coefficient de corrélation du couple (Z,T).
- 3. Les variables aléatoires Z et T sont-elles indépendantes (justifier) ? Quel est à votre avis l'intérêt pratique de cet exercice ?

Exercice 2: Changement de variables (9 points)

On considère deux variables aléatoires indépendantes X et Y de lois uniformes sur l'intervalle]-1,+1[, c'est-à-dire de densités

$$p(x,.) = \left\{ \begin{array}{l} \frac{1}{2} \text{ si } x \in]-1,1[\\ 0 \text{ sinon} \end{array} \right. \quad \text{et} \quad p(.,y) = \left\{ \begin{array}{l} \frac{1}{2} \text{ si } y \in]-1,1[\\ 0 \text{ sinon} \end{array} \right.$$

- 1. Déterminer la loi du couple (X, Y).
- 2. On définit les deux variables aléatoires $Z = \frac{Y}{X}$ et T = X. Quelle est la loi du couple (Z, T) ? (on accordera une attention particulière au domaine de définition de ce couple que l'on représentera graphiquement).
- 3. Déduire de la question précédente la loi marginale de Z. Représenter la graphiquement (on pourra vérifier que l'intégrale de cette densité est égale à 1 pour éviter une éventuelle erreur de calcul).
- 4. Déterminer la covariance du couple (Z,T) (on pourra utiliser le lien entre les variables Z et T et les variables X et Y). Les variables aléatoires Z et T sont-elles indépendantes ?

Exercice 3: Vecteurs Gaussiens (6 points)

On considère un vecteur Gaussien $\mathbf{X} = (X_1, X_2, X_3)^T$ de vecteur moyenne $\mathbf{m} = (0, 0, 0)^T$ et de matrice de covariance $\mathbf{\Sigma}$ définie comme suit

$$\mathbf{\Sigma} = \left(\begin{array}{ccc} 2 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 5 \end{array} \right)$$

- 1. On pose $U=X_1$ et $V=X_2-aX_1$, où $a\in\mathbb{R}$. Quelle est la loi du couple (U,V)? Pour quelle valeur de a les variables U et V sont-elles indépendantes (justifier avec soin votre réponse).
- 2. Déterminer les densités de X_1 et du couple de (X_1, X_2) . En utilisant la définition d'une densité conditionnelle, déterminer la densité de X_2 sachant $X_1 = x_1$ et en déduire qu'elle correspond à une loi normale $\mathcal{N}(x_1,3)$. On rappelle le résultat suivant

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right).$$

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.	
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1 - e^{itn}\right)}{n\left(1 - e^{it}\right)}$	
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$	
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0,1,,n\}$	np	npq	$(pe^{it}+q)^n$	
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$	
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1}p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$	
Poisson $P\left(\lambda\right)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$	
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$rac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\operatorname{IG}(heta, u)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu - 1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ $\chi^2_{ u}$ $\Gamma\left(\frac{1}{2},\frac{ u}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$\nu \in \mathbb{N}^*, \ x \ge 0$ $f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)