EXAMEN TRAITEMENT DU SIGNAL - 1SN

Lundi 19 février 2024, 8h30-9h30.

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (3 points)

On considère le signal aléatoire complexe

$$X(t) = Ae^{i\lambda t} + Be^{i\mu t}$$

où A et B sont deux variables aléatoires à valeurs réelles de moyennes nulles, de variances égales à 1 et de covariance nulle, i.e., cov(A,B) = E[AB] - E[A]E[B] = E[AB] = 0, et où $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$ sont deux constantes telles que $\lambda \neq \mu$. Déterminer la moyenne, la fonction d'autocorrélation et la densité spectrale de puissance de X(t).

Exercice 2 (3 points)

On considère un signal aléatoire réel stationnaire X(t) de moyenne nulle et de densité spectrale de puissance $s_X(f)$. On construit le signal aléatoire

$$Y(t) = X(t) + aX(t - d), \ a \in \mathbb{R}, d \in \mathbb{N}.$$

- Montrer que le signal Y(t) est obtenu par filtrage linéaire de X(t) par un filtre dont on déterminera la transmittance H(f) et la réponse impulsionnelle h(t).
- Déterminer la densité spectrale de puissance $s_Y(f)$ et la fonction d'autocorrélation $R_Y(\tau)$ du signal Y(t) en fonction de $s_X(f)$ et de $R_X(\tau)$.
- Déterminer la puissance du signal Y(t) notée P_Y et montrer que $P_Y \le P_X(1+a)^2$, où P_X est la puissance du signal X(t).

Exercice 3 : Théorème de Bussgang (4 points)

On considère une non-linéarité g appliquée à un processus gaussien réel X(t) stationnaire de moyenne nulle et de fonction d'autocorrélation $R_X(\tau)$

$$Y(t) = g[X(t)] = X^3(t)$$

et on s'intéresse à l'intercorrélation entre Y(t) et $X(t-\tau)$ notée $R_{YX}(\tau)$. On rappelle que pour un tel processus, la loi du couple $(U,V)=(X(t),X(t-\tau))$ est gaussienne de densité de probabilité

$$f_{\Sigma}(u, v) = \frac{1}{2\pi\sqrt{\det \Sigma}} \exp\left[-\frac{1}{2}(u, v)\Sigma^{-1}(u, v)^T\right]$$

où $(u,v) \in \mathbb{R}^2$ et où Σ est la matrice de covariance du couple (U,V) définie par

$$\Sigma = \begin{pmatrix} \operatorname{var}(U) & \operatorname{cov}(U, V) \\ \operatorname{cov}(U, V) & \operatorname{var}(V) \end{pmatrix}$$

1. Exprimer les éléments de Σ en fonction de $R_X(\tau)$ et $R_X(0)$. En déduire que la fonction d'intercorrélation $R_{YX}(\tau) = E[Y(t)X(t-\tau)]$ ne dépend que de $R_X(\tau)$ et de $R_X(0)$.

- 2. On pose $X_1=X(t),\,Y_1=g[X_1]=g[X(t)],\,X_2=X(t-\tau]$ et $Y_2=X(t-\tau)$. En utilisant le théorème de Price, déterminer $\frac{\partial E[Y_1Y_2]}{\partial E[X_1X_2]}$ et en déduire $R_{YX}(\tau)$ en fonction de $\mathbb{R}_X(\tau)$ à une constante additive près notée C.
- 3. On rappelle que les moments d'un signal Gaussien de moyenne nulle X(t) vérifient la relation

$$m_{2n} = E[X^{2n}(t)] = [(2n-1)(2n-3) \times ... \times 5 \times 3 \times 1] R_X^n(0).$$

En déduire la constante additive C.

4. Vérifier la valeur obtenue de la constante C en calculant $\lim_{\tau \to \infty} R_{YX}(\tau)$ quand $\lim_{\tau \to \infty} R_X(\tau) = 0$.

Transformée de Fourier

$$X(f) = \int_{\mathbb{R}} x(t) e^{-i2\pi f t} dt \qquad x(t) = \int_{\mathbb{R}} X(f) e^{i2\pi f t} df$$

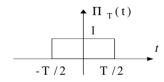
x(t) réelle paire	\rightleftharpoons	X(f) réelle paire
x(t) réelle impaire	\rightleftharpoons	X(f) imaginaire pure impaire
x(t) réel	\rightleftharpoons	Re $\{X(f)\}$ paire
		$\int \operatorname{Im} \{X(f)\} \text{ impaire}$
		X(f) pair
		$\{X(f)\}$ impaire
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0 t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left[-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

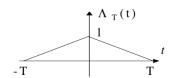
Formule de Parseval			
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}}x(t)dt = \int_{\mathbb{R}}x($	$X(f)Y^*(f)df$		
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} x(t) ^2 dt$	$ X(f) ^2 df$		

Série de Fourier		
$x(t) = \sum_{r} c_n e^{+i2\pi n f_0 t} \rightleftharpoons X(f) = \sum_{r} c_n \delta(f - n f_0)$		
$n \in \mathbb{Z}$ $n \in \mathbb{Z}$ $1 f^{T_0/2} (1) -i2\pi n \text{ for } 1$		
avec $c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-i2\pi n f_0 t} dt$		

T.F.

	1.1.	
1	\rightleftharpoons	$\delta\left(f ight)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0 ight)$
$\delta\left(t-t_{0}\right)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\sum_{k \in \mathbb{Z}} \delta\left(t - kT\right)$	\rightleftharpoons	$\frac{1}{T} \sum_{k \in \mathbb{Z}} \delta\left(f - \frac{k}{T}\right)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2} \left[\delta \left(f - f_0 \right) + \delta \left(f + f_0 \right) \right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$ \begin{array}{r} $
$\frac{2a}{a^2 + 4\pi^2 t^2}$	\rightleftharpoons	$e^{-a f }$
$e^{-at}\mathbb{I}_{\mathbb{R}^+}(t)$	\rightleftharpoons	$\frac{1}{a+2i\pi f}$
$\frac{t^n}{n!}e^{-at}\mathbb{I}_{\mathbb{R}^+}(t)$	\rightleftharpoons	$\frac{1}{(a+2i\pi f)^{n+1}}$
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$e^{-a^2t^2}$	\rightleftharpoons	$\frac{\sqrt{\pi}}{a} \exp(-\frac{\pi^2 f^2}{a^2})$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T \frac{\sin(\pi Tf)}{\pi Tf} = T \sin c (\pi Tf)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2 \left(\pi T f\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2 (\pi Bt)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$





!!!!!! Attention !!!!!

 $\Pi_{T}\left(t\right)$ est de support égal à T. $\Lambda_{T}\left(t\right)$ est de support égal à 2T et on a $\Pi_{T}\left(t\right)*\Pi_{T}\left(t\right)=T$ $\Lambda_{T}\left(t\right)$

$$\begin{array}{rcl} \delta\left(t\right) & = & \left\{ \begin{array}{l} 0 \text{ si } t \neq 0 \\ +\infty \text{ si } t = 0 \end{array} \right. \text{ et } \int_{\mathbb{R}} \delta\left(t\right) dt = 1 \\ \delta\left(t - t_0\right) f(t) & = & \delta\left(t - t_0\right) f(t_0) \\ \delta\left(t - t_0\right) * f(t) & = & f(t - t_0) \end{array}$$