
EXAMEN TRAITEMENT DU SIGNAL - SIGNAUX ALÉATOIRES - 2 EEEA

Mardi 2 Décembre 2025 (10h15-11h45)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Réduction de bruit (6 points)

Le schéma de principe d’un casque (écouteur) à réduction de bruit environnemental est décrit ci-
dessous. Nous souhaitons écouter de la musique x(t) transmise sur un haut-parleur au travers d’un filtre
de transmittance inconnue H0(f) et de réponse impulsionnelle h0(t), mais le signal en sortie du haut-
parleur y0(t) est perturbé par un bruit additif d’environnement inconnu w(t), qui a été filtré par un filtre
de transmittance inconnue H1(f) et de réponse impulsionnelle h1(t). Nous mesurons le signal reçu par
l’oreille y(t) avec le microphone 1. Un microphone supplémentaire (Micro 2) capte également le signal
v(t) qui est le bruit filtré par un filtre inconnu de transmittanceH2(f) et de réponse impulsionnelle h2(t).

Nous souhaitons concevoir un filtre G(f) annulateur de bruit tel que le bruit affectant le signal reçu
y(t) soit parfaitement annulé. Tous les signaux considérés dans cet exercice sont à valeurs dans R.

1. Le signal reçu par le microphone 1 est y(t) = y0(t)+y1(t)−yg(t), où y0(t) est le terme dépendant
du signal x(t) et de h0(t) (sortie du filtre de transmittance H0), y1(t) est le terme dépendant du
bruit w(t) et de h1(t), et enfin yg(t) dépend de w(t), h2(t) et g(t) = TF−1[G(f)]. Déterminer la
transmittance idéale G(f) permettant d’annuler le bruit d’environnement y1(t)− yg(t). (1pt)
Le signal reçu par le microphone s’écrit

y(t) = x(t) ∗ h0(t) + w(t) ∗ h1(t)− w(t) ∗ h2(t) ∗ g(t).

Pour annuler le terme de bruit, il suffit donc de choisir g(t) tel que

w(t) ∗ h1(t) = w(t) ∗ h2(t) ∗ g(t).

Comme cette condition doit être vérifiée pour tout bruit w(t), on obtient

h1(t) = h2(t) ∗ g(t)⇔ H1(f) = H2(f)G(f)⇔ G(f) = H−12 (f)H1(f).

Attention, la transformée de Fourier de w(t) n’est pas définie. Donc, on ne peut pas calculer la
transformée de Fourier de l’équation w(t) ∗ h1(t) = w(t) ∗ h2(t) ∗ g(t).
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2. Les signaux x(t) et w(t) sont supposés aléatoires stationnaires de densités spectrales de puissance
sx(f) et sw(f). On suppose également que le bruit w(t) est de moyenne nulle et que les signaux
x(t) et w(t) sont indépendants.

• Déterminer sv(f) en fonction de H2(f) et sw(f) (1pt).
Puisque v(t) est obtenu par filtrage linéaire de w(t), d’après la relation de Wiener-Lee, on a

sv(f) = sw(f)|H2(f)|2.

• On rappelle que d’après la formule des interférences, si y1(t) = w(t) ∗ h1(t) et y2(t) =
w(t) ∗ h2(t) alors

sy1y2(f) = TF[Ry1y2(τ)] = sw(f)H1(f)H∗2 (f),

où Ry1y2(τ)] = E[y1(t)y2(t − τ)] est la fonction d’intercorrélation entre les signaux y1(t)
et y2(t). En l’absence du filtre annulateur G, montrer que Ryv(τ) = E[y(t)v(t − τ)] =
E[y1(t)v(t− τ)], où y1(t) et v(t) ont été définis ci-dessus. En déduire syv(f) = TF[Ryv(τ)]
en fonction de sw(f), H1(f) et H2(f) (2pts).
La fonction d’autocorrélation entre y(t) et v(t) est définie par

Ryv(τ) = E[y(t)v(t− τ)] = E{[x(t) ∗ h0(t) + w(t) ∗ h1(t)][w(u) ∗ h2(u)|u=t−τ ]}.

En utilisant l’indépendance entre les signaux w(t) et x(t) et le fait que w(t) est de moyenne
nulle, on obtient

E{[x(t) ∗ h0(t)][w(u) ∗ h2(u)|u=t−τ ]} = E[x(t) ∗ h0(t)]E[w(u) ∗ h2(u)|u=t−τ ] = 0,

d’où
Ryv(τ) = E{[w(t) ∗ h1(t)][w(u) ∗ h2(u)|u=t−τ ]} = E[y1(t)v(t− τ)]

avec y1(t) = w(t) ∗ h1(t) et v(t) = w(t) ∗ h2(t). On en déduit

syv(f) = sw(f)H1(f)H∗2 (f).

• Déduire des résultats précédents, l’expression de la transmittance du filtre annulateur de bruit
G(f) en fonction de sv(f) et de syv(f) (1pt). En déduire comment déterminer ce filtre dans
la situation pratique où on ne connait pas les transmittances H1(f) et H2(f) (1pt).
En utilisant les expressions précédentes de sv(f) et de syv(f), on en déduit

syv(f)

sv(f)
=
sw(f)H1(f)H∗2 (f)

sw(f)H2(f)H∗2 (f)
= H1(f)H−12 (f) = G(f).

Dans la situation pratique où on ne connait pas les transmittances H1(f) et H2(f), il suffit
donc d’estimer les densités spectrales syv(f) et sv(f) à partir de y(t) et de v(t), c’est-à-dire
à partir des signaux reçus par les microphones 1 et 2.
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Exercice 2 : Puissance nème d’un signal aléatoire (4 points)

On considère un signal aléatoire réel x(t) gaussien de moyenne nulle. On suppose que ce signal est
stationnaire de fonction d’autocorrélation Rx(τ) et de densité spectrale de puissance sx(f). L’objectif
de cet exercice est de montrer que la fonction d’autocorrélation du signal yn(t) = xn(t) avec n ∈ N
notée Rn(τ) est une fonction polynomiale de degré n de Rx(τ).

1. (1pts) Déterminer Ry2(τ) pour n = 2 à une constante additive près et en déduire que le résultat
est vrai pour n = 2.
Ce résultat a été déterminé en cours et découle du théorème de Price

∂Ry(τ)

∂Rx(τ)
=E

[
∂y(t)

∂x(t)

∂y(t− τ)

∂x(t− τ)

]
=E [2x(t)2x(t− τ)]]

=4Rx(τ). (1)

En intégrant cette équation, on obtient

R2(τ) = 2R2
x(τ) +K,

qui est une fonction polynomiale de degré 2 de Rx(τ).

2. On suppose que la fonction d’autocorrélation de yn(t) est

Rn(τ) =
n∑
k=0

akR
k
x(τ).

Déterminer la fonction d’autocorrélation de yn+1(t) en fonction des coefficients ak, de Rx(τ) et
d’une constante additive K (2pt).
En utilisant le théorème de Price, on obtient

∂Rn+1(τ)

∂Rx(τ)
=E

[
∂y(t)

∂x(t)

∂y(t− τ)

∂x(t− τ)

]
=E [(n+ 1)xn(t)× (n+ 1)xn(t− τ)]]

=(n+ 1)2Rn(τ) = (n+ 1)2
n∑
k=0

akR
k
x(τ). (2)

En intégrant cette équation, on obtient

Rn+1(τ) = (n+ 1)2
n∑
k=0

ak
Rk+1
x (τ)

k + 1
+K =

n∑
k=0

(n+ 1)2

k + 1
akR

k+1
x (τ) +K,

qui est bien une fonction polynomiale de degré n+ 1 de Rx(τ), ce qui termine la récurrence.

3. On rappelle que pour une variable aléatoire Z de loi gaussienne de moyenne nulle et de variance
σ2, on a pour tout n ∈ N∗

E
[
Z2n

]
= [(2n− 1)× (2n− 3)× ...× 5× 3× 1]σ2n.

Déterminer la constante additive K en fonction des coefficients ak et de Rx(0) (1pt).
Pour τ = 0, on a

K = Rn+1(0)−
n∑
k=0

(n+ 1)2

k + 1
akR

k+1
x (0).

3



En utilisant le rappel, on a

Rn+1(0) = E[y2n+2(0)] = [(2n+ 1)× ...× 3× 1]Rn+1
x (0).

d’où

K = [(2n+ 1)× ...× 3× 1]Rn+1
x (0)−

n∑
k=0

(n+ 1)2

k + 1
akR

k+1
x (0).
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Transformée de Fourier

X(f) =
∫
R x(t)e−i2πftdt x(t) =

∫
RX(f)ei2πftdf

T.F.
x(t) réelle paire 
 X(f) réelle paire
x(t) réelle impaire 
 X(f) imaginaire pure impaire

x(t) réel 



Re {X(f)} paire

Im {X(f)} impaire
|X(f)| pair

arg {X(f)} impaire
ax(t) + by(t) 
 aX(f) + bY (f)

x(t− t0) 
 X(f)e−i2πft0

x(t)e+i2πf0t 
 X(f − f0)
x∗(t) 
 X∗(−f)

x(t) . y(t) 
 X(f) ∗ Y (f)

x(t) ∗ y(t) 
 X(f) . Y (f)

x(at) 
 1
|a|X

(
f
a

)
dx(n)(t)
dtn 
 (i2πf)nX(f)

(−i2πt)n x(t) 
 dX(n)(f)
dfn

Formule de Parseval∫
R x(t)y∗(t)dt =

∫
RX(f)Y ∗(f)df∫

R |x(t)|2 dt =
∫
R |X(f)|2 df

Série de Fourier
x(t) =

∑
n∈Z

cne
+i2πnf0t 
 X(f) =

∑
n∈Z

cnδ (f − nf0)

avec cn = 1
T0

∫ T0/2
−T0/2 x(t)e−i2πnf0tdt

T.F.
1 
 δ (f)

δ (t) 
 1

e+i2πf0t 
 δ (f − f0)
δ (t− t0) 
 e−i2πft0∑

k∈Z
δ (t− kT ) 
 1

T

∑
k∈Z

δ
(
f − k

T

)
cos (2πf0t) 
 1

2 [δ (f − f0) + δ (f + f0)]

sin (2πf0t) 
 1
2i [δ (f − f0)− δ (f + f0)]

e−a|t| 
 2a
a2+4π2f2

2a
a2+4π2t2


 e−a|f |

e−atIR+(t) 
 1
a+2iπf

tn

n! e
−atIR+(t) 
 1

(a+2iπf)n+1

e−πt
2



√
π
a exp(−π2f2

a2
)

e−a
2t2 
 e−πf

2

ΠT (t) 
 T sin(πTf)
πTf = T sin c (πTf)

ΛT (t) 
 T sin c2 (πTf)

B sin c (πBt) 
 ΠB (f)

B sin c2 (πBt) 
 ΛB (f)

!!!!!! Attention !!!!!
ΠT (t) est de support égal à T .
ΛT (t) est de support égal à 2T
et on a ΠT (t) ∗ΠT (t) = T ΛT (t)

δ (t) =

{
0 si t 6= 0

+∞ si t = 0
et
∫
R
δ (t) dt = 1

δ (t− t0) f(t) = δ (t− t0) f(t0)

δ (t− t0) ∗ f(t) = f(t− t0)
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