EXAMEN TRAITEMENT DU SIGNAL - SIGNAUX ALEATOIRES - 2 EEEA
Mardi 2 Décembre 2025 (10h15-11h45)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Réduction de bruit (6 points)

Le schéma de principe d’un casque (écouteur) a réduction de bruit environnemental est décrit ci-
dessous. Nous souhaitons écouter de la musique z(t) transmise sur un haut-parleur au travers d’un filtre
de transmittance inconnue Hy(f) et de réponse impulsionnelle h( (%), mais le signal en sortie du haut-
parleur yo(t) est perturbé par un bruit additif d’environnement inconnu w(t), qui a été filtré par un filtre
de transmittance inconnue H;(f) et de réponse impulsionnelle /1 (t). Nous mesurons le signal regu par
’oreille y(t) avec le microphone 1. Un microphone supplémentaire (Micro 2) capte également le signal
v(t) qui est le bruit filtré par un filtre inconnu de transmittance Ho( f) et de réponse impulsionnelle hy(t).

Nous souhaitons concevoir un filtre G(f) annulateur de bruit tel que le bruit affectant le signal recu
y(t) soit parfaitement annulé. Tous les signaux considérés dans cet exercice sont a valeurs dans R.
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1. Le signal recu par le microphone 1 est y(t) = yo(t)+y1(t) —yg4(t), ot yo(t) est le terme dépendant
du signal z(t) et de ho(t) (sortie du filtre de transmittance Hy), y1(t) est le terme dépendant du
bruit w(t) et de hy(t), et enfin y,(¢) dépend de w(t), ha(t) et g(t) = TFG(f)]. Déterminer la
transmittance idéale G( f) permettant d’annuler le bruit d’environnement y; () — y,(t). (1pt)

Le signal recu par le microphone s’écrit

y(t) = x(t) x ho(t) + w(t) * hy(t) — w(t) = ha(t) * g(t).
Pour annuler le terme de bruit, il suffit donc de choisir g(¢) tel que
w(t) * hq(t) = w(t) = ha(t) * g(t).
Comme cette condition doit étre vérifiée pour tout bruit w(t), on obtient
ha(t) = ha(t) * g(t) & Hi(f) = Ha()G(f) & G(f) = Hy () Hr(f):

Attention, la transformée de Fourier de w(t) n’est pas définie. Donc, on ne peut pas calculer la
transformée de Fourier de I’équation w(t) * hy(t) = w(t) * ha(t) = g(t).



2. Les signaux x(t) et w(t) sont supposés aléatoires stationnaires de densités spectrales de puissance
sz(f) et sy (f). On suppose également que le bruit w(t) est de moyenne nulle et que les signaux
x(t) et w(t) sont indépendants.

e Déterminer s, (f) en fonction de Ha(f) et s, (f) (1pt).
Puisque v(t) est obtenu par filtrage linéaire de w(t), d’apres la relation de Wiener-Lee, on a

su(f) = suw()[Ha(f)*.

e On rappelle que d’apres la formule des interférences, si y1(t) = w(t) * hy(t) et y2(t) =
w(t) * ha(t) alors

Sy1y2 (f) = TF[Ry1y2 (T)} = Sw(f)Hl(f)H;(f)a

ol Ry,y,(7)] = Ely1(t)y2(t — 7)] est la fonction d’intercorrélation entre les signaux y (¢)
et y2(t). En I’absence du filtre annulateur G, montrer que Ry, (1) = E[y(t)v (t -7)] =
Elyi(t)v(t — )], ot y1(t) et v(t) ont été définis ci-dessus. En déduire sy, (f) = TF[Ry,(7)]
en fonction de s, (f), Hi(f) et Ha(f) (2pts).

La fonction d’autocorrélation entre y(t) et v(t) est définie par

Ryy(1) = Ely(t)o(t — 7)] = E{[x(t) * ho(t) + w(t) * ha()][w(u) * ho(u)|u=t—~]}-

En utilisant I’indépendance entre les signaux w(t) et 2:(t) et le fait que w(t) est de moyenne
nulle, on obtient

E{[z(t) « ho(®)][w(u) * ha(w)|u=t—~} = Ela(t) * ho(0)| E[w(u) * ha(u)|u=t—-] = 0,

d’ou
Ryy(7) = E{w(t) * i (D)][w(w) * ha(u)lu=t-7]} = Ely1(t)o(t - 7)]
avec y1(t) = w(t) * hi(t) et v(t) = w(t) * ha(t). On en déduit

Syv(f) = sw(f)Hl(f)HS(f)

o Déduire des résultats précédents, I’expression de la transmittance du filtre annulateur de bruit
G(f) en fonction de s, (f) et de sy, (f) (1pt). En déduire comment déterminer ce filtre dans
la situation pratique out on ne connait pas les transmittances H; (f) et Ha(f) (1pt).

En utilisant les expressions précédentes de s, (f) et de sy, (f), on en déduit

syo(f)  sw(f)HI(f)H5(f) o
) suDHm(Es(n - ) =)

Dans la situation pratique oll on ne connait pas les transmittances H1(f) et Ha(f), il suffit
donc d’estimer les densités spectrales s, (f) et s, (f) a partir de y(¢) et de v(t), c’est-a-dire
a partir des signaux regus par les microphones 1 et 2.




Exercice 2 : Puissance néme d’un signal aléatoire (4 points)

On considere un signal aléatoire réel z(¢) gaussien de moyenne nulle. On suppose que ce signal est
stationnaire de fonction d’autocorrélation R,(7) et de densité spectrale de puissance s, (f). L objectif
de cet exercice est de montrer que la fonction d’autocorrélation du signal y,,(t) = x™(t) avec n € N
notée R,,(7) est une fonction polynomiale de degré n de R, (7).

1. (Ipts) Déterminer R,,(7) pour n = 2 a une constante additive prés et en déduire que le résultat
est vrai pour n = 2.
Ce résultat a été déterminé en cours et découle du théoréme de Price

ORy(r) _ . [0y(t) Oy(t — )
E [am(t) Ox(t — 7')]
=F [2z(t)2z(t — 7)]]
=4R,(T). (D

OR(T)

En intégrant cette équation, on obtient
Ry(7) = 2R2(7) + K,
qui est une fonction polynomiale de degré 2 de R, (7).

2. On suppose que la fonction d’autocorrélation de v, (¢) est
n
R, (1) = Zakaz(T).
k=0

Déterminer la fonction d’autocorrélation de y,,+1(¢) en fonction des coefficients ay, de R, (T) et
d’une constante additive K (2pt).
En utilisant le théoréeme de Price, on obtient

OBy (1) _ [83/(15) dy(t — T)]
OR,(t) — |Ox(t) Ox(t —7)
=E[(n+ 1)z"(t) x (n+1)2"(t — 7)]]

=(n+1)’Ru(7) = (n+ 1)*>_ axRy(7). )
k=0

En intégrant cette équation, on obtient

n

Ropa(r) = (n+1)* ) ap———=

k=0 k=0
qui est bien une fonction polynomiale de degré n + 1 de R, (7), ce qui termine la récurrence.

3. On rappelle que pour une variable aléatoire Z de loi gaussienne de moyenne nulle et de variance
o2, on a pour tout n € N*

E[Z"] =[(2n—1) x (20— 3) X ... x 5 x 3 x 1] 0"

Déterminer la constante additive K en fonction des coefficients ay et de R, (0) (1pt).

Pour 7 =0,0na
n

K = Rp1(0) = )

k=0

(n+1)2

k+1
P ap R (0).



En utilisant le rappel, on a
Rni1(0) = E[*"2(0)] = [(2n + 1) x ... x 3 x 1]R™T1(0).

d’ou ,
= 1
K=[2n+1) x ... x 3 x 1]R"1(0) — (:211)

k=0

akR§+1 (O)



Transformée de Fourier

X(f) = [ga(t)e mtdt
TF. |

w(t) = [z X (f)em I df

—_
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—_—
=

x(t) réelle impaire

X (f) imaginaire pure impaire

x(t) réel

Re {X(f)} paire
Im{X(f)} impaire
X ()| pair
arg { X (f)} impaire
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(—iont)"2(t) = X

H

Formule de Parseval ‘ H

Série de Fourier H

Jrr@y*(t)dt = [ X(F)Y*(f)df

w(t) = X cae™T = X(f) = Yend (f — nfo)

neL

ne’

2 2 .
Jele@I”dt = [5 |X ()" df avec ¢, = 7 LTOTO% (t)e 2ot g
TF. |
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