EXAMEN STATISTIQUE - 1SN

Lundi 15 janvier 2024 (10h-11h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Estimation (10 points)

On considère n observations $x_1, ..., x_n$ issues d'un vecteur $(X_1, ..., X_n)$ de n variables aléatoires indépendantes de mêmes lois de densités

$$f_r(x_i; \lambda) = \frac{\lambda^r}{\Gamma(r)} \frac{1}{x_i^{r+1}} \exp\left(-\frac{\lambda}{x_i}\right) I_{\mathbb{R}^+}(x_i),$$

où $I_{\mathbb{R}^+}$ est la fonction indicatrice sur \mathbb{R}^+ ($I_{\mathbb{R}^+}(x)=1$ si x>0 et 0 sinon) et où r est un paramètre supposé connu vérifiant r>2. La moyenne et la variance d'une telle loi appelée loi inverse-gamma et notée $\mathcal{IG}(r,\lambda)$ (voir tables) sont

$$E[X_i] = \frac{\lambda}{r-1} \text{ et var}[X_i] = \frac{\lambda^2}{(r-1)^2(r-2)}.$$

On admettra que si $X_i \sim \mathcal{IG}(r,\lambda)$, alors $\frac{1}{X_i}$ suit une loi gamma de paramètres r et λ , c'est-à-dire $\frac{1}{X_i} \sim \mathcal{G}(r,\lambda)$, et qu'inversement si une variable Y_i est de loi gamma, i.e., $Y_i \sim \mathcal{G}(r,\lambda)$, alors $\frac{1}{Y_i} \sim \mathcal{IG}(r,\lambda)$.

1. (2pts) Montrer que l'estimateur du maximum de vraisemblance du paramètre λ est

$$\widehat{\lambda}_{\text{MV}} = \frac{nr}{\sum_{k=1}^{n} \frac{1}{X_k}}.$$

On justifiera que la vraisemblance admet un maximum en ce point.

- 2. (2pt) En utilisant les propriétés des lois gamma et inverse gamma données en début d'énoncé, déterminer la loi de $Y_k = \frac{1}{X_k}$. Montrer que $Y = \sum_{k=1}^n \frac{1}{X_k}$ suit une loi gamma dont on précisera les paramètres (on pourra déterminer la fonction caractéristique de Y). En déduire la loi de $\frac{1}{V}$.
- 3. (2pts) Calculer l'espérance de $\widehat{\lambda}_{MV}$. En déduire un estimateur non biaisé de λ noté $\widetilde{\lambda}_{MV}$. L'estimateur $\widetilde{\lambda}_{MV}$ est-il convergent?
- 4. (2pts) Déterminer la borne de Cramér-Rao d'un estimateur non biaisé de λ . L'estimateur λ_{MV} est-il l'estimateur efficace du paramètre λ ?
- 5. (2pts) On suppose désormais que le paramètre λ est muni d'une loi a priori de densité

$$f(\lambda) = \begin{cases} e^{1-\lambda} & \text{si } \lambda > 1 \\ 0 & \text{sinon} \end{cases}$$

Déterminer l'estimateur du maximum a posteriori du paramètre λ noté $\widehat{\lambda}_{MAP}$ et le comparer à $\widehat{\lambda}_{MV}$ pour $n \to \infty$. Commenter ce résultat.

Exercice 2 : Tests Statistiques (10 points)

On considère n observations $x_1, ..., x_n$ issues d'un vecteur $(X_1, ..., X_n)$ de n variables aléatoires indépendantes de mêmes lois de densités

$$f_r(x_i; \lambda) = \frac{\lambda^r}{\Gamma(r)} \frac{1}{x_i^{r+1}} \exp\left(-\frac{\lambda}{x_i}\right) I_{\mathbb{R}^+}(x_i),$$

où $I_{\mathbb{R}^+}$ est la fonction indicatrice sur \mathbb{R}^+ ($I_{\mathbb{R}^+}(x)=1$ si x>0 et 0 sinon) et où r est un paramètre supposé connu. Pour r>2, la moyenne et la variance d'une telle loi appelée loi inverse-gamma et notée $\mathcal{IG}(r,\lambda)$ sont (voir table)

$$E[X_i] = \frac{\lambda}{r-1} \text{ et var}[X_i] = \frac{\lambda^2}{(r-1)^2(r-2)}.$$

On désire utiliser les observations $x_1, ..., x_n$ pour déterminer si $\lambda = \lambda_0 > 0$ ou si $\lambda = \lambda_1 > \lambda_0$. On considère donc le test d'hypothèses

$$H_0: \lambda = \lambda_0, \quad H_1: \lambda = \lambda_1 \quad \text{avec } \lambda_1 > \lambda_0.$$

- 1. (2pt) Déterminer la statistique T_n du test de Neyman Pearson et la région critique associée (sans chercher pour l'instant à déterminer le seuil associé à cette région noté S_{α}).
- 2. (1pt) En admettant que $Y_i = \frac{1}{X_i}$ suit une loi gamma de paramètres r et λ , i.e., $Y_i \sim \mathcal{G}(r,\lambda)$, déterminer la loi asymptotique de T_n sous les deux hypothèses H_0 et H_1 .
- 3. (2pts) On note G la fonction de répartition d'une loi du normale $\mathcal{N}(0,1)$. En utilisant la loi asymptotique trouvée à la question précédente, exprimer le risque de première espèce α en fonction du seuil du test de Neyman Pearson noté S_{α} , de $G(\alpha)$, n, r et λ_0 . En déduire la valeur du seuil S_{α} en fonction de $G^{-1}(\alpha)$ et de n, r et λ_0 .
- 4. (2pts) Déterminer les caractéristiques opérationnelles du récepteur (courbes COR) pour ce test et montrer qu'elles ne dépendent que de nr et de $\frac{\lambda_1}{\lambda_0}$. Analyser les performances du test en fonction de $\frac{\lambda_1}{\lambda_0}$ et tracer l'allure des courbes COR pour différentes valeurs de $\frac{\lambda_1}{\lambda_0}$.
- 5. (3pts) On désire vérifier que les observations x_i suivent la loi de densité $f_r(x_i; \lambda)$ avec $r = \lambda = 1$ à l'aide d'un test de Kolmogorov.
 - Déterminer la fonction de répartition de la loi de densité $f_r(x_i; \lambda)$ notée F lorsque $r = \lambda = 1$.
 - On observe l'échantillon de taille n=4 suivant : $x_1=2, x_2=3, x_3=4$ et $x_4=\frac{3}{2}$. Le tableau suivant résume les quantités nécessaires pour effectuer le test

$x_{(i)}$	1.5	2	3	4	
$F\left(x_{(i)}\right)$	0.5134	0.6065	0.7165	0.7788	
$\hat{F}\left(x_{(i)}^{-}\right)$	0	0.25	0.50	0.75	
$\hat{F}\left(x_{(i)}^{+}\right)$	0.25	0.50	0.75	1	
$E_i^- = F\left(x_{(i)}\right) - \hat{F}\left(x_{(i)}^-\right) $	0.5134	0.3565	0.2165	0.0288	
$E_i^+ = F\left(x_{(i)}\right) - \hat{F}\left(x_{(i)}^+\right) $	0.2634	0.1065	0.0335	0.2212	
ab () act 124 ab antill an and anné					

 $\overline{\text{où }(x_{(1)},x_{(2)},x_{(3)},x_{(4)})}$ est l'échantillon ordonné.

Expliquer ce que représentent $\hat{F}\left(x_{(i)}^{-}\right)$ et $\hat{F}\left(x_{(i)}^{+}\right)$.

• Rappeler la région critique du test de Kolmogorov. Pour $\alpha=0.01$ et n=4, on a $S_{0.01}=0.7342$. Que peut-on en conclure ?

LOIS DE PROBABILITÉ DISCRÈTES

$$p_k = P[X = k]$$
 $p_{1,...,m} = P[X_1 = k_1, ..., X_m = k_m]$

LOI	Probabilités	Moyenne	Variance	Fonction Caractéristique
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1] q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = \binom{n}{k} p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0, 1,, n\}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$	np	npq	$\left(pe^{it} + q\right)^n$
Binomiale négative	$p_k = \binom{n+k-1}{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : $np_{j}q_{j}$ Covariance : $-np_{j}p_{k}$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES

LOI	Densité de probabilité	Moyenne	Variance	Fonction Caractéristique
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$\frac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1}$ si $\nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_p\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = Ke^{-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)}$ $K = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}}$ $x \in \mathbb{R}^p$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ $\chi^2_ u$ $\Gamma\left(rac{1}{2},rac{ u}{2} ight)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$ \nu \in \mathbb{N}^*, \ x \ge 0 $ $ f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)} $ $ \lambda > 0, \ \alpha \in \mathbb{R} $	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)