
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 91 (2011) 2615–2622
0165-16

doi:10.1

$ Thi

2009-4
� Cor

E-m

bershad

(J.-Y. T
journal homepage: www.elsevier.com/locate/sigpro
Stochastic analysis of an error power ratio scheme applied
to the affine combination of two LMS adaptive filters$
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a b s t r a c t

The affine combination of two adaptive filters that simultaneously adapt on the same

inputs has been actively investigated. In these structures, the filter outputs are linearly

combined to yield a performance that is better than that of either filter. Various decision

rules can be used to determine the time-varying parameter for combining the filter

outputs. A recently proposed scheme based on the ratio of error powers of the two

filters has been shown by simulation to achieve nearly optimum performance. The

purpose of this paper is to present a first analysis of the statistical behavior of this error

power scheme for white Gaussian inputs. Expressions are derived for the mean

behavior of the combination parameter and for the adaptive weight mean-square

deviation. Monte Carlo simulations show good to excellent agreement with the

theoretical predictions.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The design of many adaptive filters requires a trade-off
between convergence speed and steady-state
mean-square error (MSE). In general, a faster (slower)
convergence speed yields a larger (smaller) steady-state
mean-square deviation (MSD) and MSE. This trade-off is
usually controlled by some design parameter of the
weight update, such as a step size, a regularization
parameter or a forgetting factor. Variable step-size mod-
ifications of the basic adaptive algorithms offer a possible
solution to this design problem [1–4].

Recently, a novel scheme has been proposed in [5]
which uses a convex combination of two fixed step-size
ll rights reserved.
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adaptive filters as shown in Fig. 1. The key to this scheme
is the selection of the scalar mixing parameter lðnÞ for
combining the two filter outputs. The mixing parameter is
defined in [6] as a sigmoid function whose free parameter
is adaptively optimized using a stochastic gradient search
which minimizes the quadratic error of the overall filter.
The performance of this adaptive scheme has been
recently studied in [7,8]. The convex combination
performed as well as the best of its components in the
MSE sense. These results indicate that a combination of
adaptive filters can lead both to fast convergence rates
and good steady-state performance, an attribute that is
usually obtained only in variable step-size algorithms.
Thus, there is great interest in learning more about the
properties of such adaptive structures.

More recently [9] the convex combination has been
generalized to an affine combination, in which lðnÞ is not
restricted to the interval (0,1). Fig. 1 was interpreted from
the viewpoint of a linear combiner where each adaptive
filter is estimating the unknown channel impulse response
using the same input data. The achievable performance
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Fig. 1. Adaptive combining of two transversal adaptive filters.
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was studied for an affine combination of two LMS adaptive
filters with a white Gaussian input. The optimal combining
parameter sequence loðnÞ was determined which mini-
mizes the weight mean-square deviation (MSD). This
optimal affine combiner is not realizable, as its design
requires the knowledge of the unknown response. Never-
theless, its performance provides an upper bound on the
performance of any realizable affine combiner. The analysis
of the affine combination of adaptive filters has been
further expanded in [10,11]. Affine and convex combina-
tions have been compared in [12–14].

Two realizable schemes for updating lðnÞ were
proposed in [9]. The first scheme is based on a stochastic
gradient approximation to loðnÞ. This scheme has been
analyzed in [11]. The second scheme is based on the
relative values of averaged estimates of the individual
error powers. Though simulation results using this
scheme have shown performances very close to the
optimum, so far there is no available analytical model
for its performance.

This paper presents1 a first analysis of the stochastic
behavior of the error power scheme proposed in [9]. The
analysis assumes a stationary environment and a white
Gaussian input signal.2 The mean behavior of lðnÞ is
studied by replacing the involved random variables by
their means resulting in expressions for E½lðnÞ� (E½��mean-
ing statistical expectation) involving the time-varying
weight MSDs of the individual filters, the cross MSD
between filters and the background noise. Monte Carlo
simulations show excellent agreement with the theore-
tical predictions based on the analytical model.

This paper is organized as follows. Section 2 briefly
reviews the main expressions derived in [9] for the
behavior of an affine combination for a white Gaussian
input, as well as the expression for lðnÞ that characterizes
the error power scheme. Section 3 presents the derivation
of the analytical models for the behaviors of E½lðnÞ� and
the weight MSD of the combination. Section 4 presents
1 Part of this work has been presented in [15].
2 The analysis is this paper is restricted to the white input case in

order to simplify the understanding and the interpretation of the results.

It appears to us that extension to the colored input case is straightfor-

ward using the results in [11].
simulation results that verify the quality of the analytical
model. Section 5 concludes the paper.
2. The affine combiner

The system under investigation is shown in Fig. 1. Each
individual filter uses the LMS adaptation rule but with
different step sizes mi, i¼1,2:

W iðnþ1Þ ¼W iðnÞþmieiðnÞUðnÞ, i¼ 1,2 ð1Þ

where

eiðnÞ ¼ dðnÞ�WT
i ðnÞUðnÞ, i¼ 1,2 ð2Þ

dðnÞ ¼ eoðnÞþWT
oUðnÞ ð3Þ

where Wo is the unknown weight vector, W iðnÞ, i¼1,2,
are the N-dimensional adaptive coefficient vectors, and
eo(n) is assumed zero-mean, i.i.d. with variance s2

o and
statistically independent of any other signal in the
system. UðnÞ ¼ ½uðnÞ, . . . ,uðn�Nþ1Þ�T is the input vector.
The input process u(n) is assumed to be white, Gaussian,
with zero-mean, variance s2

u and conditional correlation
matrix Ru ¼ E½UðnÞUT

ðnÞjW1ðnÞ,W2ðnÞ�.
In the following analysis, the input vector at time n is

assumed statistically independent of the weights at time
n (independence theory). Thus, Ru ¼ E½UðnÞUT

ðnÞ� ¼ s2
uI. It

is also assumed that the errors e1ðnÞ and e2ðnÞ are zero-
mean, white over time and conditionally Gaussian given
W1ðnÞ and W2ðnÞ. Finally, it will also be assumed, without
loss, that m1Zm2, so that W1ðnÞ will, in general, converge
faster than W2ðnÞ. Also, W2ðnÞ will converge to the lowest
individual steady-state weight misadjustment. The
stochastic analysis of each individual adaptive filter beha-
vior in (1) is well-known [16–18].

The outputs of the two filters are combined as shown
in Fig. 1,

yðnÞ ¼ lðnÞy1ðnÞþ½1�lðnÞ�y2ðnÞ ð4Þ

where yiðnÞ ¼WT
i ðnÞUðnÞ, i¼1,2, lðnÞ can be any real

number3 and the overall system error is given by

eðnÞ ¼ dðnÞ�yðnÞ ð5Þ

The adaptive filter output combination (4) is an affine
combination, as y(n) can assume any value on the real
line. This setup generalizes the combination of adaptive
filter outputs, and can be used to study the properties of
the optimal combination.

The optimum instantaneous value loðnÞ for lðnÞ for
white inputs has been determined in [9] to satisfy

½W1ðnÞ�W2ðnÞ�
T ½W1ðnÞ�W2ðnÞ�loðnÞ

¼ ½Wo�W2ðnÞ�
T ½W1ðnÞ�W2ðnÞ� ð6Þ

Assuming that, in steady-state, loðnÞ is slowly varying
in comparison with other term on the l.h.s. of (6) and
3 This case corresponds to an affine (as opposed to convex) combi-

nation. The output in (4) can have any real value on the line containing

y1ðnÞ and y2ðnÞ. y(n) is restricted to the points on the line between y1ðnÞ

and y2ðnÞ in the convex combination case.
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taking the expectation of both sides yields

lim
n-1

Ef½W1ðnÞ�W2ðnÞ�
T ½W1ðnÞ�W2ðnÞ�gE½loðnÞ�

¼ lim
n-1

Ef½Wo�W2ðnÞ�
T ½W1ðnÞ�W2ðnÞ�g ð7Þ

Thus,

lim
n-1

E½loðnÞ�C lim
n-1

E½WT
2ðnÞW2ðnÞ��E½WT

2ðnÞW1ðnÞ�

Ef½W1ðnÞ�W2ðnÞ�
T ½W1ðnÞ�W2ðnÞ�g

ð8Þ

It has also been determined in [9] that

E½WT
i ðnþ1ÞW jðnþ1Þ� ¼ ½1�ðmiþmjÞs2

uþðNþ2Þmimjs4
u�

�E½WT
i ðnÞW jðnÞ�þmis2

u½1�ðNþ2Þmjs2
u�W

T
oE½W jðnÞ�

þmjs2
u½1�ðNþ2Þmis2

u�W
T
o E½W iðnÞ�

þmimjs4
u N

s2
o

s2
u

� �
þðNþ2ÞWT

o Wo

� �
: ð9Þ

where [16]

E½WkðnÞ� ¼ ð1�mks2
uÞ

nE½Wkð0Þ�þ½1�ð1�mks2
uÞ

n
�Wo ð10Þ

for k¼1,2, i¼1,2 and j¼1,2,

lim
n-1

E½WT
2ðnÞW1ðnÞ� ¼WT

oWoþ
m1m2Ns2

o

ðm1þm2Þ�m1m2ðNþ2Þs2
u

ð11Þ

and

lim
n-1

E½WT
i ðnÞW iðnÞ� ¼WT

oWoþ
miNs2

o

2�miðNþ2Þs2
u

, i¼ 1,2

ð12Þ

Rewriting (8) as a function of (11) and (12) yields

lim
n-1

E½loðnÞ�C lim
n-1

1

1þ
E½WT

1ðnÞW1ðnÞ��E½WT
2ðnÞW1ðnÞ�

E½WT
2ðnÞW2ðnÞ��E½WT

2ðnÞW1ðnÞ�

ð13Þ

It has been shown in [11] that (13) can be approximated
by

lim
n-1

E½loðnÞ�C
dð2�m1Ns2

uÞ

2ðd�1Þ
ð14Þ

where d¼ ðm2=m1Þo1.

3. Error power based mixing parameter updating
scheme

A function of time averaged error powers has been
shown in [9] to be a good candidate for an estimator of
the optimum lðnÞ for each n. The individual adaptive error
powers are good indicators of the contribution of each
adaptive output to the quality of the present estimation of
d(n). These errors are readily available and do not need an
estimate of the additive noise power.

Consider a uniform sliding time average of the instan-
taneous errors

ê
2
1ðnÞ ¼

1

K

Xn

m ¼ n�Kþ1

e2
1ðmÞ ð15Þ

ê
2
2ðnÞ ¼

1

K

Xn

m ¼ n�Kþ1

e2
2ðmÞ ð16Þ
where K is the averaging window length. Then, the
instantaneous value of lðnÞ is determined as

lðnÞ ¼ 1�kg½xðnÞ�, xðnÞ ¼
ê

2
1ðnÞ

ê
2
2ðnÞ

ð17Þ

where g½xðnÞ� is a nonlinear function that tends to one as
xðnÞ tends to infinity and to a value much less than one as
xðnÞ tends to zero. Thus, y(n) tends to y1ðnÞ when
e2

1ðnÞ5e2
2ðnÞ and to y2ðnÞ when e2

2ðnÞ5e2
1ðnÞ, which is the

desired combined adaptive behavior when m14m2 in
Fig. 1 [9].

This paper generalizes the error power ratio scheme
proposed in [9] and analyzed in [15] to a generic non-
linearity g½xðnÞ�. Examples of functions g½xðnÞ� with the
desirable properties described above are the hyperbolic
tangent function

g1½xðnÞ� ¼ tanh
xðnÞ

2

� �
ð18Þ

and the erf function,

g2½xðnÞ� ¼ erf ½xðnÞ� ¼
2ffiffiffiffi
p
p

Z xðnÞ

0
e�t2

dt ð19Þ

Eqs. (17) and either (18) or (19) allow lðnÞ to vary
smoothly over ð1�k,1Þ as required.

3.1. The value of k

The value of k in (17) controls the value of lðnÞ as
n-1. Ideally, it should be selected so that

lim
n-1

E½lðnÞ�C lim
n-1

E½loðnÞ� ð20Þ

Taking expectations of both sides of (17) and approximat-
ing the random variables by their means, a first order
approximation of E½lðnÞ� is obtained as

E½lðnÞ�C1�kg
E½ê

2
1ðnÞ�

E½ê
2
2ðnÞ�

( )
ð21Þ

However,

E½ê
2
i ðnÞ� ¼

1

K

Xn

m ¼ n�Kþ1

E½e2
i ðmÞ�

¼ s2
oþ

s2
u

K

Xn

m ¼ n�Kþ1

MSDiðmÞ, i¼ 1,2 ð22Þ

where

MSDiðmÞ ¼ Ef½Wo�W iðmÞ�
T ½Wo�W iðmÞ�g

¼WT
o Wo�2WT

o E½W iðmÞ�þE½WT
i ðmÞW iðmÞ�, i¼ 1,2

ð23Þ

Using (22) in (21) and taking the limit as n-1 yields

lim
n-1

E½lðnÞ�C1�kg
s2

oþs2
u MSD1ð1Þ

s2
oþs2

u MSD2ð1Þ

� �
ð24Þ

Finally, equating (24) to (14) and solving for k yields

k¼ 1�
dð2�m1Ns2

uÞ

2ðd�1Þ

� �
g
s2

oþs2
u MSD1ð1Þ

s2
oþs2

u MSD2ð1Þ

� �� ��1

ð25Þ

where MSD1ð1Þ and MSD2ð1Þ can be obtained from (9)
and (10) for a given s2

o , s2
u, m1 and m2.



4 This assumption is reasonable given the small fluctuations of lðnÞ,
as shown later on in the simulation examples.
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3.2. Mean behavior of lðnÞ

An analytical model for the mean behavior of (17) is
derived by approximating the expected value of g½xðnÞ� by
a second order expansion. Defining

ZðnÞ ¼ E½xðnÞ� and s2
xðnÞ ¼ E½x2

ðnÞ��Z2ðnÞ ð26Þ

a second order approximation of Efg½xðnÞ�g is [19, p. 113,
Eq. (5.55)]

Efg½xðnÞ�gCg½ZðnÞ�þ
s2
xðnÞ

2
g00½ZðnÞ� ð27Þ

Thus,

E½lðnÞ�C1�k g½ZðnÞ�þ
s2
xðnÞ

2
g00½ZðnÞ�

( )
ð28Þ

Now, writing

ê
2
i ðnÞ ¼ E½ê

2
i ðnÞ�þeiðnÞ ¼miðnÞþeiðnÞ, i¼ 1,2 ð29Þ

the mean ZðnÞ is approximated as

ZðnÞ ¼ E
m1ðnÞþe1ðnÞ

m2ðnÞþe2ðnÞ

� �
C

m1ðnÞ

m2ðnÞ
¼

E½ê
2
1ðnÞ�

E½ê
2
2ðnÞ�

ð30Þ

where the fluctuations of ê
2
i , i¼1,2 have been neglected.

This is because these quantities are closely approximated
by their mean values for sufficiently large K. The numera-
tor and denominator of (30) are given by (22) for i¼1 and
2, respectively.

Using the same reasoning as above, the variance s2
xðnÞ

is approximated as follows:

s2
xðnÞ ¼ E

ê
2
1ðnÞ

ê
2
2ðnÞ

 !2
8<
:

9=
;�Z2ðnÞ

C
Ef½ê

2
1ðnÞ�

2g

Ef½ê
2
2ðnÞ�

2g
�

E½ê
2
1ðnÞ�

E½ê
2
2ðnÞ�

( )2

ð31Þ

Using (29), (31) can be written as

s2
xðnÞC

m2
2ðnÞE½e2

1ðnÞ��m2
1ðnÞE½e2

2ðnÞ�

fm2
2ðnÞþE½e2

2ðnÞ�gm
2
2ðnÞ

ð32Þ

Under the assumption that e1ðnÞ and e2ðnÞ are zero-mean,
white over time, and conditionally Gaussian given W1ðnÞ

and W2ðnÞ,

E½e2
i ðnÞ� ¼

2

K2

Xn

m ¼ n�Kþ1

E½e2
i ðmÞ�

2

¼
2

K2

Xn

m ¼ n�Kþ1

½s2
oþs

2
u MSDiðmÞ�

2, i¼ 1,2: ð33Þ

Using (22) and (33) in (32) for s2
xðnÞ, (22) in (30) for ZðnÞ,

and finally (25), (30) and (32) in (28) yields the analytical
model for E½lðnÞ�. Evaluation of the final expression for
each nonlinear function g½xðnÞ� requires the evaluation of
g½ZðnÞ� and g00½ZðnÞ�.
3.3. Mean-square deviation

Using (4) and (5) with yiðnÞ ¼WT
i UðnÞ, i¼1,2 and

rearranging terms yields

eðnÞ ¼ eoðnÞþflðnÞ½Wo�W1ðnÞ�

þ½1�lðnÞ�½Wo�W2ðnÞ�g
T UðnÞ ð34Þ

Neglecting the statistical dependence between lðnÞ and
the adaptive weights,4 squaring and averaging (34) yields
an approximation for the MSD of the adaptive filter
combination:

MSDcðnÞ ¼ E½e2ðnÞ��s2
o

Cs2
ufE½l

2
ðnÞ�MSD1ðnÞ

þf1�2E½lðnÞ�þE½l2
ðnÞ�gMSD2ðnÞ

þ2fE½lðnÞ��E½l2
ðnÞ�gMSD21ðnÞg ð35Þ

where

MSD21ðnÞ ¼ Ef½Wo�W2ðnÞ�
T ½Wo�W1ðnÞ�g

¼WT
oWo�WT

o E½W1ðnÞ��WT
oE½W2ðnÞ�þE½WT

2ðnÞW1ðnÞ�:

ð36Þ

Thus, an approximation for E½l2
ðnÞ� is necessary. From

(17),

E½l2
ðnÞ� ¼ 1�2k EfgðxðnÞ�gþk2Efg2½xðnÞ�g ð37Þ

Efg½xðnÞ�g has already been evaluated in Section 3.2 above.
Again, using a second degree approximation for Efg2½xðnÞ�g
and defining

q½xðnÞ� ¼ g2½xðnÞ� ð38Þ

yields

Efq½xðnÞ�gCq½ZðnÞ�þ
s2
x

2
q00½ZðnÞ� ð39Þ

which completes the model, except for the evaluations of
g00½ZðnÞ� and q00½ZðnÞ� for the specific nonlinearity.

3.4. Models using different nonlinear functions

The complete analytical model for different nonlinear
functions g½xðnÞ� only requires the evaluation of g00½xðnÞ�
and q00½xðnÞ�. Table 1 shows these expressions for g1½xðnÞ�
and g2½xðnÞ� in (18) and (19). Extension to other nonlinear
functions is straightforward.

4. Simulation results

This section presents simulation results to verify the
accuracy of the models derived for the mean behavior of
lðnÞ (Eq. (28)) and for the MSDcðnÞ (Eq. (35)).

Consider a system identification setup in which d(n) is
the system’s output and the system’s impulse response
Wo ¼ ½wo1

, . . . ,woN
�T is given by the raised-cosine function

[20] whose k-th coefficient is

wok
¼

sin½2pfoðk�DÞ�
2pfoðk�DÞ

cos½2prf oðk�DÞ�
1�4rf oðk�DÞ

, k¼ 1, . . . ,N ð40Þ
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In (40), N is the number of coefficients, D is the right shift
delay relative to the even function case, r is the roll-off
factor (0rrr1) and fo ¼ 3a=N where a is the expansion
factor.

In all the following simulations, N¼32, K¼100, s2
u ¼ 1

and the value of k was obtained from (25). The expected
values were estimated from 50 Monte Carlo runs.
Table 1

Expressions of g00 ½xðnÞ� and q00 ½xðnÞ� for g½xðnÞ� ¼ g1½xðnÞ� and

g½xðnÞ� ¼ g2½xðnÞ�.

g1½xðnÞ� g001½xðnÞ� ¼�
1
4 f1�g2

1 ½xðnÞ�gg1½xðnÞ�
q001½xðnÞ� ¼

1
2 f1�g2

1 ½xðnÞ�gf1�3g2
1 ½xðnÞ�g

g2½xðnÞ� g002½xðnÞ� ¼�
4xðnÞffiffiffiffi

p
p e�x

2
ðnÞ

q002½xðnÞ� ¼
8ffiffiffiffi
p
p

e�x
2
ðnÞffiffiffiffi
p
p �xðnÞe�x

2
ðnÞg2½xðnÞ�

( )
e�x

2
ðnÞ
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−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Unknown impulse response Wo for Example 1.
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1.4

Fig. 3. Monte Carlo simulations averaged over 50 realizations for g2½xðnÞ�with s
(top curve): EfloðnÞg (optimum). Blue (superimposed by the red curve): EflðnÞg f

Black: MSDcðnÞ for loðnÞ. Blue (bottom curve): MSDcðnÞ from simulations. Red (t

in this figure legend, the reader is referred to the web version of this article.)
4.1. Example 1

The unknown response Wo was obtained from (40)
with D¼ 10, r¼0.2 and a¼ 1:2. The response is shown in
Fig. 2. The nonlinearity g2½xðnÞ� was used in (17). Fig. 3(a)
shows the mean behaviors of loðnÞ (Eq. (6)) and lðnÞ
(Eq. (17)), and the theoretical prediction from (28) for
s2

o ¼ 10�4, m1 ¼ 1=34 and step-size ratio d¼ 0:1 (m2 ¼

0:0029). Note that (17) and (25) result in a mean behavior
quite close to that of E½loðnÞ�. Also, the theoretical model
very accurately predicts the behavior of E½lðnÞ�. Fig. 3(b)
shows that (1) the actual system performance is very close
to optimal and (2) the theoretical model (35) is accurate.

4.2. Example 2

The unknown response has parameters D¼ 5, r¼0 and
a¼ 3:8 and is shown in Fig. 4. This unknown response is
more peaky with a longer tail than in the first example. The
0 500 1000 1500 2000 2500 3000 3500 4000
−60

−50

−40

−30

−20

−10

0

2
o ¼ 10�4, d¼ 0:1 and m1 ¼ 1=34. (a) Behavior of EflðnÞg and EfloðnÞg. Black

rom (17). Red (bottom curve): theory using (28). (b) Behavior of MSDcðnÞ.

op curve): theory using (35). (For interpretation of the references to color

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Unknown impulse response Wo for Example 2.
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Fig. 6. Monte Carlo simulations averaged over 50 realizations for g1½xðnÞ� with s2
o ¼ 10�3, d¼ 0:3 and m1 ¼ 1=34. (a) Behavior of EflðnÞg and EfloðnÞg. Black
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nonlinearity g2½xðnÞ� was used in (17). The noise level was
increased to 10�3, m1 ¼ 1=34 was maintained and the step-
size ratio was changed to d¼ 0:3 (m2 ¼ 0:0088). Fig. 5(a) and
(b) shows the simulation results and the theoretical predic-
tions for E½lðnÞ� and MSDcðnÞ for this case. Again, very good
agreements between the behaviors of E½loðnÞ� and E½lðnÞ�
and excellent theoretical predictions of the actual system
behavior are displayed. Note that a window of only 100
points (K¼100) corresponds to a very fast response for
changing lðnÞ, a desirable property in practical applications.

4.3. Example 3

For this example, the parameters are the same as in
Example 2 (Fig. 5), except that g1½xðnÞ� is used instead of
g2½xðnÞ� for the nonlinearity in (17). The results are shown
in Fig. 6. Comparison of Fig. 6 with Fig. 5 suggests that the
performance is relatively robust to the exact form of the
saturation nonlinearity g.

4.4. Example 4

For this example, the parameters are the same as in
Example 1 (Fig. 3), except that the step size m1 was reduced
to 1/64 and d¼ 0:2. The results are shown in Fig. 7. In this
case, the transfer from filter 1 to filter 2 starts, on average,
earlier than the ideal. This is what causes the bump in the
MSDc behavior, relative to the optimal. Convergence,
however, is achieved after about 2500 iterations and
matches the optimal performance. The analytical model
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predicts very well the algorithm’s behavior. The premature
transfer from filter 1 to filter 2 seems to be a typical
behavior of the error power transfer scheme as the faster
filter step size reduces from the maximum speed value.
Nevertheless, the best performance is obtained from the
LMS affine combination when filter 1 is designed for
maximum convergence speed and filter 2 is designed for
the required steady-state performance. A practical design
methodology will be illustrated in the following example.

4.5. Example 5

This example is presented in order to compare the
performance of the error power scheme to the Z-PN-LMS
and Z-SR-LMS algorithms described in [11]. The unknown
response has parameters D¼ 15, r¼0 and a¼ 2:8 and the
noise floor is s2

o ¼ 10�4. The nonlinearity g2½xðnÞ� was used
in (17). The steady-state MSE for the combined filters is

xcð1Þ ¼ E½e2ð1Þ� ¼ s2
o ðnÞþs

2
uMSDcð1Þ

Step size m2 ¼ 0:0106 was chosen so that s2
u MSD2ð1Þ �

s2
u MSDcð1Þ � 2� 10�5 has a negligible effect on xcð1Þ.

Smaller values for m2 slow overall convergence without
significant reduction in xcð1Þ.

Now, the fastest convergence step size for filter 1
would be m1o

¼ 1=Ns2
u ¼ 0:0312 for this case. Using m1 ¼

1=ðNþ2Þ ¼ 0:0294 (for stability reasons), yields d¼
0:3590.
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Good step-size parameters for the l adjustment in [11]
(obtained after some optimization by trial and error) are
~mZ � 0:09 and mZs � 0:75 for this case.5

Fig. 8(a) and (b) shows the Monte Carlo simulation
results for the new design parameters. Fig. 8(a) shows
that lðnÞ evaluated using the error power scheme is much
closer to loðnÞ in the transition region than lðnÞ for either
of the two schemes in [11]. This difference is seen clearly
in Fig. 8(b). Increasing the l-adjustment step sizes to
increase the speed in the transition region has led to
larger steady-state fluctuations in lðnÞ, resulting in larger
steady-state MSD. It can also be verified that lðnÞ obtained
using all three schemes deviates significantly from
loðnÞ � 1 during the initial phase (this property is also
discussed in [11]). After the initial and before the transi-
tion phase, lðnÞ provided by either of the two schemes in
[11] approaches lðnÞ ¼ 1 faster than the error power
scheme.6 The different behaviors, however, do not appear
to have a significant impact on the behavior of MSDcðnÞ

before the transition phase.

5. Conclusions

This paper has studied the stochastic behavior of the
error power scheme proposed in [9] for an affine combi-
nation of two LMS adaptive filters. A new design equation
for k improves the steady-state match between the out-
put combination parameter lðnÞ and the optimum para-
meter loðnÞ. Analytic models have been derived for the
mean behavior of lðnÞ and for the combined adaptive
weights mean-square deviation. Linear and quadratic
model approximations have been used. The resulting
model was shown to be simple to implement and accu-
rate in predicting the affine combination behavior.
Comparison with gradient type schemes [11] indicate a
better performance of the studied scheme in the transition
region. Possible future works include the analysis of the
error power scheme performance for colored input signals.
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