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Joint Segmentation of Piecewise Constant
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Model and a Bayesian Sampling Approach
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Abstract—We propose a joint segmentation algorithm for
piecewise constant autoregressive (AR) processes recorded by
several independent sensors. The algorithm is based on a hierar-
chical Bayesian model. Appropriate priors allow us to introduce
correlations between the change locations of the observed signals.
Numerical problems inherent to Bayesian inference are solved
by a Gibbs sampling strategy. The proposed joint segmentation
methodology yields improved segmentation results when com-
pared with parallel and independent individual signal segmen-
tations. The initial algorithm is derived for piecewise constant
AR processes whose orders are fixed on each segment. How-
ever, an extension to models with unknown model orders is also
discussed. Theoretical results are illustrated by many simula-
tions conducted with synthetic signals and real arc-tracking and
speech signals.

Index Terms—Gibbs sampling, hierarchical Bayesian analysis,
Markov chain Monte Carlo (MCMC), reversible jumps, segmen-
tation.

I. INTRODUCTION

I N many practical situations, one tools up some process with
a collection of sensors, each of which delivering a time se-

ries. When the aim is process monitoring, an important task is
to detect abrupt changes that occur in the sensor signals, and
that may be related to a change in the process itself. Important
such cases are in vibration monitoring of gearboxes, segmenta-
tion of multiple-track audio, etc. Using several sensors makes
the detection more accurate, but a practical difficulty is about
the fusion of the detections made on each signal. An alternative
solution consists of implementing joint abrupt change detection
over all the sensors.

This paper addresses the problem of segmenting correlated
signals recorded from several sensors. Of course, signal seg-
mentation has already received much attention in the signal pro-
cessing literature (see, for instance, the textbooks [1]–[3] and
references therein). Recent advances can be mainly divided into
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two categories. The first class of methods consists of penal-
izing a data based criterion in order to avoid oversegmenta-
tion. Different approaches have been recently proposed to de-
termine the appropriate penalization for segmentation [4]–[6].
The second class of methods relies on Bayesian inference. The
choice of appropriate priors for the unknown parameters induce
penalization on the data-driven criterion built from the likeli-
hood of the observations. The standard Bayesian estimators in-
cluding the maximum a posteriori (MAP) and the minimum
mean-square error (MMSE) estimators can then be derived. The
computational complexity inherent to these change-point esti-
mators is usually bypassed by using Markov chain Monte Carlo
(MCMC) methods [7]–[9]. One recurrent problem with this kind
of methodology is hyperparameter estimation. There are mainly
two directions that can be followed to estimate these hyperpa-
rameters. The first approach couples MCMCs with an expecta-
tion-maximization (EM) algorithm or a stochastic approxima-
tion (SAEM) [10], [11]. The second approach defines noninfor-
mative prior distributions for the hyperparameters introducing
a second level of hierarchy within the Bayesian paradigm. This
results in a so-called hierarchical Bayesian model. The hyper-
parameters are then integrated out from the joint posterior dis-
tribution or estimated from the observed data [9].

The main contribution of this paper is to study a joint seg-
mentation procedure that allows one to handle signals recorded
from different sensors. The proposed approach introduces
correlations between the change points of the observed signals.
More precisely, when a change is detected in one or several
signals at a given time location, the proposed algorithm favors
the occurrence of a change at this time location in the other
signals. This change-point correlation is built within a Bayesian
framework by defining appropriate change-point priors. The
proposed methodology is very similar to the hierarchical
Bayesian curve fitting technique studied in [9]. However, the
segmentation procedure studied in this paper allows joint
segmentation of signals recorded by different sensors, contrary
to the algorithm proposed in [9]. This is, to our knowledge, the
first time a fully Bayesian algorithm is developed for joint seg-
mentation of piecewise constant autoregressive (AR) processes.

A. Notations and Problem Formulation

In this paper, we consider that sensors deliver sig-
nals (also referred to as observations), whose sample size
is . Individual signals are denoted in vector form as

for , where is the
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sample of signal at time . Each of the signals is modeled
as a piecewise constant AR process as follows:

(1)

where is the segment index that refers to one of
the portions where the AR process is stationary. In each of
these segments, for signal , the set of AR parameters is
denoted in vector form as . The poles
of the AR processes are supposed to be inside the unit circle, en-
suring stationarity and causality on each segment. The segment

in the signal has boundaries denoted by ,
where is the time index immediately after which a change
occurs, with the convention that and . Finally,

is a vector of independent and identically
distributed (i.i.d.) zero-mean Gaussian noise samples. The noise
vectors are assumed independent.

Modeling the observations as AR processes can be motivated
as follows: for any continuous spectral density , an AR
process can be found with a spectral density arbitrary close to

[12, p. 130]. Many authors have followed this viewpoint
in change-detection algorithms, including [13] and [14]. We as-
sume in a first step that the orders of the AR models in (1) are
all equal to . This assumption is actually only aimed at simpli-
fying the presentation. A more general model, where the (un-
known) orders of the AR models on each segments are assumed
unrelated from one segment to another, and from one signal
to another, is derived later in this paper. By using the notation

, the equations in (1) can be written in
the following matrix form:

(2)

where denotes a matrix of size :

...
...

...
...

(3)

This paper proposes a Bayesian framework as well as an effi-
cient algorithm aimed at estimating the change-point locations

from the observed time series , .

B. Paper Organization

The Bayesian model used for joint change-point detection is
presented in Section II. This model requires to adjust hyper-
parameters related to the change-point location, AR parameter
and noise variance priors. The proposed methodology assigns
vague priors to the unknown hyperparameters. The hyperpa-
rameters are then integrated out from the joint posterior or es-
timated from the observed data. This results in a hierarchical
Bayesian model described in Section II. An appropriate Gibbs
sampler studied in Section III allows one to generate samples
distributed according to the change-point posterior. The sam-
pler convergence properties are investigated through simula-
tions presented in Section IV. The initial algorithm is gener-
alized for AR models whose orders on each signal segment

are unknown in Section V. Section VI studies the performance
of the proposed joint procedure for arc-tracking detection and
speech segmentation. Conclusions are reported in Section VII.

II. HIERARCHICAL BAYESIAN MODEL

The joint abrupt change detection problem presented in the
previous section is based on the estimation of the unknown pa-
rameters (numbers of segments), (change-point loca-
tions), (noise variances, with ), and

(AR parameter vectors which are denoted jointly as
for signal ). A standard reparameterization

consists of introducing indicator variables ,
) such that

if there is a change-point at time
in signal
otherwise

with (this condition ensures that the number of change
points equals the number of segments in signal , that is

). Using these indicator variables, the unknown pa-
rameter vector is , where
and . It is important to note that the param-
eter vector belongs to a space whose dimension depends on

, i.e., . This paper
proposes a Bayesian approach to the estimation of the unknown
parameter vector . Bayesian inference on is based on the
posterior distribution , with , which
is related to the observations likelihood and to the parameter
priors via Bayes’ rule . The likelihood
and priors used for the joint abrupt change detection are pre-
sented below.

A. Approximate Likelihood

Though the likelihood of a single AR model is easy to write
exactly, the likelihood of a piecewise stationary AR model is
much more complicated, as each stationary segment needs to
be initialized using the samples from the previous segment. In
many works, the dependence of the exact likelihood on
the first samples is omitted (see [15, p. 186] for more
details), and we adopt this approximation. In other words, by
using the independence assumption between the noise vectors

, , the exact likelihood of is approximated
as follows:

(4)

where is the length of segment in
signal and

(5)

where .
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B. Parameter Priors

In our approach, the abrupt changes are detected via the in-
dicator variables , (we recall that there is one
variable for each signal , and one variable for each time index

). This section defines the indicator, variance, and
AR parameter priors.

1) Indicators: Possible correlations between change loca-
tions in the observed signals are modeled by an appropriate
prior distribution , where and is
defined below. Before being more precise, we define a global
abrupt change configuration as follows: the matrix is com-
posed of 0’s and 1’s, and a global configuration is a specific
instance of this matrix. In our formulation, this corresponds to a
specific solution to the joint abrupt change detection problem. A
local abrupt change configuration, denoted (where

), is a specific instance of a column of : this corre-
sponds to a the presence/asbsence of abrupt changes at a given
time, across the signals.

Denote as the probability of having a local abrupt change
configuration at time , that is, of having .
We first assume that does not depend on the time index . As
a consequence, by assuming that is independent
of for any , the indicator prior distribution
is expressed as

(6)

where and is the number of times such
that . For example, in the case of two ob-
served signals and (i.e., ), the prior distribution of

can be written as

(7)

where , ,
, and .

With this prior, a high value of indicates a very likely con-
figuration for all . For in-
stance, by choosing a high value of (respectively, ),
we will favor a simultaneous absence (respectively, presence) of
changes in all observed signals. This choice introduces correla-
tion between the change-point locations.

2) Variances and AR Parameters: Inverse-Gamma distribu-
tions are selected for the noise variances

(8)

where denotes the inverse-Gamma distribution with
parameters and , (as in [9]) and is an adjustable
hyperparameter. This is a so-called conjugate prior, which has
been used successfully in [9] for Bayesian curve fitting. We as-
sume here that the hyperparameter is the same for all the
observed signals. Note, however, that a similar analysis could
be conducted with a set of nonequal hyperparameters ,

. Such analysis is interesting when signal amplitudes
differ significantly from one signal to another, and it is devel-
oped in [16].

Conjugate zero-mean Gaussian priors are chosen for the AR
parameters, as follows:

(9)

where is the identity matrix, is the vector made of
zeros, and is an adjustable hyperparameter. One motivation
for selecting conjugate priors is that they allow to integrate out
(marginalize) the noise variances and AR parameters in the pos-
terior , making the computations easier.

C. Hyperparameter Priors

The hyperparameter vector associated with the parameter
priors defined above is . Of course, the ability
of this Bayesian model to detect abrupt changes accurately in
the signals depends on the values of the hyperparameters. As
outlined in Section I, these hyperparameters should be consid-
ered as unknown and estimated as this makes the overall model
more robust (see [9], for example). The resulting hierarchical
model requires to define hyperparameter priors (sometimes
referred to as hyper-priors), which are detailed below.

1) Hyperparameters and : The priors for hyperparame-
ters and are selected as a noninformative Jeffreys’ prior and
a vague conjugate inverse-Gamma distribution (i.e., with large
variance), which reflect the lack of precise knowledge regarding
these hyperparameters:

(10)

where is the indicator function defined on .
2) Hyperparameter : The prior distribution for the

hyperparameter is a Dirichlet distribution with param-
eter vector defined on the simplex

such that denoted as
. This distribution has been chosen since it al-

lows marginalization of the posterior distribution with
respect to . Moreover, by choosing , , the
Dirichlet distribution reduces to the uniform distribution on .

Assuming that the individual hyperparameters are indepen-
dent, the full hyperparameter prior distribution can be written
(up to a normalizing constant)

(11)

where means “proportional to” and is the gamma
function.

D. Posterior Distribution of

The posterior distribution of the unknown parameter vector
can be computed from the following hierarchical structure:

(12)



1254 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 4, APRIL 2007

where

(13)

and and are defined in (4) and (11). This hierar-
chical structure allows to integrate out the nuisance parameters

, and from the joint
distribution , yielding

(14)

with

(15)

and

(16)

The posterior distribution in (14) is too complex to enable the
closed-form calculation of Bayesian estimators (e.g., MMSE or
MAP) for the unknown parameters. In this case, it is very usual
to apply MCMC methods to generate samples which are asymp-
totically distributed according to the posteriors of interest. The
samples can then be used to estimate the unknown parameters
by replacing integrals by empirical averages over the MCMC
samples.

Here, we propose a Gibbs sampler strategy that is similar
to that in [9], with two noticeable differences, however: 1) our
approach enables to perform joint signal segmentation and
2) the use of indicator variables sets our model into a fixed
dimensional space, which avoids the costly implementation of
reversible jumps. Section III presents the MCMC algorithm
designed to perform the joint abrupt change detection in the
case where the orders or the AR models, as well as the hyperpa-
rameter , are the same for all the signals. These assumptions
will be removed in Section V.

III. GIBBS SAMPLER FOR JOINT SIGNAL SEGMENTATION

Gibbs sampling is an iterative sampling strategy which con-
sists of generating random samples (denoted by , where
is the iteration index) distributed according to the conditional
posterior distributions of each parameter. This paper proposes
to sample according to the distribution defined
in (14) by the three-step procedure outlined below. The main
steps of Algorithm 1, as well as the key equations, are detailed
in Sections III-A to III-C below.

Algorithm 1: Gibbs Sampling Algorithm for Abrupt
Change Detection

• Initialization:
— sample hyperparameter vector

from the probability density function (pdf) in (11);
— for sample, from the

pdf in (6);
— for , , sample and

from the pdf’s in (8) and (9);
— Set .

• Iterations: for , do
— for each time instant , sample the local

abrupt change configuration at time
from its conditional distribution given in (17);

— for signals , and segments ,
sample the noise variance from its conditional
posterior given in (18);

— sample the hyperparameter from its posterior given
in (19);

— for signals and segments ,
sample the AR coefficients from their conditional
posterior given in (20);

— sample the hyperparameter from its conditional
posterior given in (21);

— (optional step) sample the hyperparameter from
the pdf in (22);

— set .

A. Generation of Samples According to

This step is achieved by using the Gibbs Sampler, to
generate Monte Carlo samples distributed according to

. This vector is a random vector
of Booleans in . Consequently, its distribution is fully charac-
terized by the probabilities ,

. By using the notation to denote the matrix ,
where the column at time is removed, the following result can
be obtained:

(17)

where is the matrix where the column at time is re-
placed by the vector . This yields a closed-form expression
of the probabilities after
appropriate normalization.

B. Generation of Samples According to

To obtain samples distributed according to ,
it is very convenient to generate vectors distributed according
to the joint distribution by using Gibbs
moves. By looking carefully at the joint distribution of

, this step can be decomposed as follows.
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TABLE I
PARAMETERS OF THE AR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE

• Generate samples according to
By integrating the joint distribution with re-
spect to the AR parameters, the following results can be
obtained:

(18)

(19)

where is the Gamma distribution with parameters
.

• Generate samples according to
This is achieved as follows:

(20)

(21)

with .

C. Posterior Distribution of

The hyperparameters , , carry information regarding
the correlations between the change locations in the different
time series. As a consequence, it is interesting for practical
applications to estimate them from their posterior distribution,
which is Dirichlet:

(22)

IV. SEGMENTATION OF SYNTHETIC DATA

The simulation presented in this section have been obtained
for with sample size . The change-point lo-
cations are and . The parameters
of the two AR processes are summarized in Table I. The fixed
parameters and hyperparameters have been chosen as follows:

(as in [9]), , and (vague hyperprior),
, . The hyperparameters are equal to

insure the Dirichlet distribution reduces to a uniform distribu-
tion. Moreover, the common value to the hyperparameters
has been set to in order to reduce the influence of
this parameter in the posterior (22). In order to speed up the com-
putations, the quantities , , and defined in (15)
have been computed following the implementations described
in [17] and reported in the Appendix. All figures have been ob-
tained after averaging the results of 64 Markov chains. The total

number of runs for each Markov chain is , including
burn-in iterations. Thus, only the last 500 Markov

chain output samples are used for the estimations (the choice of
parameters and will be discussed later). Note that run-
ning 100 iterations of the proposed algorithm for joint segmen-
tation of signals with sample size takes approximately
2 min and 30 s for a MATLAB implementation on a 2.8-GHz
Pentium IV. Of course, the computational cost will increase for
longer time series and may become prohibitive.

A. Posterior Distributions of the Change-Point Locations

The first simulation shows the interest of joint segmentation
compared to signal-by-signal segmentation for two independent
AR processes. Fig. 1 shows the posterior distributions of the
change-locations obtained for the two time series. As can be
seen, the change point of the second time series can be de-
tected when using the joint segmentation technique (right fig-
ures) whereas it is not detected when applying two single signal
independent segmentations (left figures). When joint segmenta-
tion is performed, the change point located at time in
the second signal favors the detection of a change at the same
time index in the other signal. Note that the results presented
in Fig. 1 (left figures) are obtained with univariate segmenta-
tions , which correspond to the Bayesian curve fitting
strategy of Punskaya et al. [9].

B. Posterior Distribution of the Change-Point Numbers

The estimation of the total number of change points for
the two time series is an important problem. The proposed
algorithm generates samples distributed
according to the posterior distribution , which
allows for model selection. Indeed, for each sample ,
the number of change points are and

. Fig. 2 shows the means of and
as well as means standard deviations computed from the

500 last Markov chain samples with the joint approach. The
histograms have maximum values for and ,
which correspond to the actual numbers of changes.

C. Noise Variances and AR Parameters

The estimation of the noise variances or AR parameters can
be interesting in practical applications. Figs. 3 and 4 show
the posterior distributions of parameters and

associated with the two time-series and .
These histograms are in good agreement with the actual values
of the parameters , , and

, . Similar results could be obtained for
AR parameters. They are omitted here for brevity.
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Fig. 1. Posterior distributions of the change-point locations for one-dimensional (left) and joint segmentations (right) obtained after N = 200 burn-in iterations
and N = 500 iterations of interest.

Fig. 2. Posterior distributions of the change-point numbers computed from
N = 500 iterations of interest (mean in gray, mean � standard deviations
in white and black).

Fig. 3. Posterior distributions of the noise variances � (for i = 1; . . . ; 3)
conditioned to K = 3 computed from N = 500 iterations of interest (solid
lines). Averaged posterior distributions from 64 Markov chains (dashed lines).

Fig. 4. Posterior distributions of the noise variances � (for i = 1,2) condi-
tioned to K = 2 computed from N = 500 iterations of interest (solid lines).
Averaged posterior distributions from 64 Markov chains (dashed lines).

Fig. 5. Posterior distributions of the hyperparameters P (computed from
N = 500 iterations of interests of 64 Markov chains).

D. Hyperparameter Estimation

The performance of the hyperparameter estimation procedure
needs to be investigated. The estimated posteriors of hyperpa-
rameters , , , and are depicted in Fig. 5. This
shows that the proposed Gibbs sampler actually generates sam-
ples distributed according to the true distribution in (22).

E. Robustness to Correlated Noise Vectors

This section shows that the proposed joint segmentation pro-
cedure is robust to correlated noise vectors. For this, assume that
the two noise vectors and are correlated with the following
covariance matrices:

for

for

for
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Fig. 6. Posterior distributions of the change-point locations for correlated noise vectors with � = 0:1 (left) and � = 0:5 (right) (N = 200 and N = 500).

Note that for , this example reduces to the previous syn-
thetic data. The results of the joint hierarchical Bayesian seg-
mentation procedure are depicted in Fig. 6 for two different
values of , i.e., two different correlations. Figs. 1 and 6 show
that similar results are obtained for uncorrelated and correlated
noise vectors. Consequently, the proposed model appears to be
robust to noise correlations.

F. Sampler Convergence

The Gibbs sampler allows to draw samples
asymptotically distributed according to . The
change-point posterior probabilities can then be estimated by
the empirical average (according to the MMSE principle), as
follows:

(23)

where is the number of burn-in iterations. However, two
important questions are 1) When can we decide that the sam-
ples are actually distributed according to the target dis-
tribution? and 2) How many samples are necessary to obtain
an accurate estimate of when using (23)? Running multiple
chains with different initializations allows us to define various
convergence measures for MCMC methods [18]. This section
proposes to use the popular between-within variance criterion to
ensure the convergence of the algorithm. This method was ini-
tially studied by Gelman and Rubin in [19] and has been often
used to monitor convergence (see, for example, [20], [21], or
[18, p. 33]). This criterion requires us to run parallel chains of
length with different starting values. The between-sequence
variance and within-sequence variance for the Markov
chains are defined by

(24)

and

(25)

Fig. 7. Convergence assessment: the outputs of M = 5 chains for the param-
eter P converge to the same value.

with

(26)

where is the parameter of interest and is the run of the
chain. The convergence of the chain is monitored by a so-

called potential scale reduction factor defined as [22, p. 332]

(27)

A value of close to 1 indicates a good convergence of the
sampler.

Different choices for parameter could be considered for the
proposed joint segmentation procedure. This paper proposes to
monitor the convergence of the Gibbs sampler with the param-
eters , . As an example, the outputs of chains
for parameter are depicted in Fig. 7. The chains clearly con-
verge to similar values. The potential scale reduction factors for
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TABLE II
POTENTIAL SCALE REDUCTION FACTORS OF P (COMPUTED FROM M = 64 MARKOV CHAINS)

Fig. 8. MSE between the reference and estimated a posteriori change-point
probabilities versus p (solid line). Averaged MSE computed from 64 chains
(dashed line) (N = 200).

all parameters are given in Table II. These values of con-
firm the good convergence of the sampler (a recommendation
for convergence assessment is a value of below 1.2 [22, p.
332]). It is important to make the following comments.

• For segmentation purposes, the important information is
contained in the change locations, which has motivated the
choice of the parameters for monitoring convergence.
However, for applications requiring signal reconstruction,
the AR parameters and noise variances are im-
portant parameters. Therefore, the potential scale reduction
factors computed for the estimated variances are also
indicated in Table II. The obtained values confirm that a
burn-in of 200 iterations is sufficient for this example.

• Other simulation examples with smaller changes or closer
changepoints can yield MCMC convergence problems.
In such cases, an alternative based on perfect simulation
might be implemented (see [23] for more details).

In order to determine the number of runs that are required
to obtain an accurate estimate of when using (23), an ad
hoc approach consists of assessing convergence via appropriate
graphical evaluations [18, p. 28]. Here, a reference estimate de-
noted as has been computed for a large number of iterations

and (to ensure convergence of the
sampler and good accuracy of the approximation in (23)). Fig. 8
shows the mean-square error (MSE) between this reference es-
timate and the estimate obtained after iterations (and

):

This figure indicates that a number of iterations equal to
is sufficient to ensure an accurate estimation of the empir-

ical average in (23) for this example. Of course, for more diffi-
cult problems, a larger number of iterations will be necessary to
obtain an accurate estimation of the posterior distribution.

V. UNKNOWN AR MODEL ORDERS

This section generalizes the previous hierarchical Bayesian
model to AR processes whose orders are unknown and differ
from one segment to another.

A. Extented Bayesian Model

We define appropriate priors for the new parameters to be
estimated. A truncated Poisson distribution is chosen for the
model order priors

(28)

Classically, a vague conjugate Gamma distribution is assigned
to the hyperparameter with fixed parameters and

(29)

Therefore, by assuming the independence between and
for all and , and by denoting

with , the posterior of
interest can be written

(30)

where has been defined in (16). We point out that the
dimensions of the matrix and therefore the quantity
defined in (15) depend on the model order .

B. Reversible-Jump MCMC Algorithm

The previous distribution requires to develop an efficient
strategy to sample according to . In this
case, the vectors to be sampled belong to the
space whose
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dimension depends on . In order to sample directly on this
space, we propose an hybrid Gibbs algorithm referred to as
“algorithm 2” whose main steps are detailed below.

a) Generation of samples according to
: As in the initial model, this

generation is achieved by using Gibbs moves to
generate Monte Carlo samples distributed according
to . The probabilities

could
be evaluated in an exact way with the two following
updating rules for :
— if two segments with orders and have to be

merged, the model order of the resulting segment
is ;

— if one segment with order has to be split, the model
orders and of the two resulting segments are
chosen as follows: and

.
These choices ensure the reversibility of the different
moves.

b) Generation of samples according to
: As in [9], the update of the

model orders is performed by using a reversible-jump
MCMC procedure:
— a birth move is proposed with the

probability ;
— a death move is proposed with the

probability .
The acceptance probability for the new Monte Carlo state
is

(31)

with .
c) Generation of samples according to

: Looking carefully at its pos-
terior distribution, we can sample by a simple
Metropolis–Hastings step with a Gamma proposal
distribution and the
following acceptance probability:

(32)

d) Generation of samples according to
: As in the initial model,

after appropriate integration, the following posteriors are
obtained:

(33)

(34)

e) Generation of samples according to
: This is achieved as follows:

(35)

(36)

f) Generation of samples according to : As in
the initial model, the following posterior is obtained:

(37)

It is important to note that the proposed scheme requires
only one model order selection (i.e., one reversible-jump
MCMC procedure) contrary to the approach presented
in [9].

Algorithm 2: Hybrid Gibbs Algorithm for Abrupt
Change Detection

• Initialization:
— sample hyperparameter vector

from the pdf in (11);
— sample hyperparameter from the pdf in (29);
— for sample, from the

pdf in (6);
— for , , sample ,

and from the pdf’s in (8), (9) and (28);
— set .

• Iterations: for , do:
— for , sample according

to the probabilities defined in step a) below;
— for , , update the model

order [see step b)]:
• if , then propose

,
else if , then propose

,

• if (see (31)), ,

else ;

— update [see step c)]:
• propose according to the Gamma proposal

distribution defined in step d);
• if (see (32)), ,

else ;
— for , , sample from

the pdf in (33);
— sample from the pdf in (34);
— for , , sample from

the pdf in (35);
— sample from the pdf in (36);
— (optional step) sample from the pdf in (37);
— set .
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TABLE III
PARAMETERS OF THE AR MODEL AND NOISE VARIANCES FOR EACH SEGMENT OF EACH SEQUENCE

Fig. 9. Posterior distributions of the model orders p (for i = 1; . . . ; 3) con-
ditioned to K = 3.

Fig. 10. Posterior distributions of the model orders p (for i = 1,2) condi-
tioned to K = 2.

C. Simulations

In order to assess the accuracy of the proposed method, we
consider synthetic signals of samples. The
change-point locations are and . The
parameters of the two AR processes (which have been extracted
from [9]) are summarized in Table III. The fixed parameters and
hyperparameters have been chosen as follows: , ,

, , (vague hyperpriors), and ,
so as to obtain a uniform prior distribution for . The es-

timated values for AR model orders associated to the two signals
are depicted on Figs. 9 and 10. The corresponding change-point
posterior distributions are shown on Fig. 11. The proposed al-
gorithm achieves accurate estimation of changes in the two se-
quences. The orders of the AR processes in each segment are
also estimated with good accuracy.

VI. APPLICATIONS

A. “Arc-Tracking” Detection

We illustrate the performance of the proposed segmentation
procedure by processing real aeronautical data, where the issue
is to prevent the phenomenon referred to as “arc-tracking.” This
phenomenon is responsible of many fatal aircraft crashes in the
last years. The few hundreds of kilometers of wires embedded

Fig. 11. Posterior distribution of the change-point locations estimated by the
reversible-jump algorithm.

on military and commercial aircrafts are subject to various con-
straints (chemical, mechanical, thermic, etc.) resulting in insula-
tion damages. These breakdowns expose the cable to intermit-
tent fault-arc currents that could ignite the neighboring wires
[24]. Several methods for detection of wiring failures have been
studied in the literature: they are mainly based on dielectric
properties [25] or, more recently, on electromagnetic proper-
ties [26]. We propose here an “arc-tracking” detection procedure
that searches for transients in the predamaged wires, which is a
early phenomenon announcing “arc-tracking” problems.

The analyzed data have been recorded from a common three-
phase ( , , and ) supply voltage whose electric network fre-
quency is . The phenomenon we are looking for affects the
signals at frequencies higher than .1 Therefore, the se-
quences whose sample size is are filtered by an high-
pass filter in order to highlight the transients which are much
less energetic. The filtered voltages can be accurately modeled
as AR processes. The presence of transients in the observed
time-series results in changes in the AR parameters.

We propose to detect the transients that appear on phases
, , and between 0.04 s and 0.17 s. The ob-

served data corresponding to the three phases have been pro-
cessed by the proposed joint segmentation algorithm. The es-
timated number of change points and their positions are ob-
tained after iterations including a burn-in period of

iterations. The parameters and have been

1For confidentiality reasons, the actual values of f and f corresponding to
these real aeronautical data cannot be provided.
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Fig. 12. Posterior distribution of the change-point locations and segmentation
of three-dimensional aeronautical data (N = 100 and N = 450).

chosen to provide appropriate potential reduction factors for
the hyperparameters . Note that running 30 iterations of the
proposed algorithm takes approximately 4 min for a MATLAB
implementation on a 2.8-GHz Pentium IV.

In the first step of the analysis, we estimate the number of
change-points for the observed sequences. The posteriors of
the number of changes in each signal are not depicted here
for brevity. The corresponding MAP estimators are ,

, and . The estimated posterior distribution of
depicted in Fig. 12 can then be used to estimate the begin-

ning and the end of transients in each phase. Indeed, by keeping
the largest peaks of the posterior distribution , the
segments corresponding to the different transients (outlined by
vertical lines in Fig. 12) can be reconstructed.

B. Speech Segmentation

This section illustrates the performance of the proposed al-
gorithm by processing a real speech signal which has received
much attention in the literature (see [1], [3], [9], [14], and more
recently [23]). As explained in [1, p. 401], this signal belongs
to a database designed by the French National Agency for
Telecommunications. It consists of a noisy speech recorded
in a car with the sampling frequency 8 kHz and quantized
with 16 bits. It is prefiltered by a highpass filter with cutoff
frequency equal to 150 Hz. The raw one-dimensional (1-D)
data have been processed by the proposed
algorithm with . The estimated number of change points
and their positions are obtained after iterations,
including a burn-in period of iterations ( and

have been chosen in order to obtain appropriate potential
reduction factors for the hyperparameters ). The esti-
mated changes are depicted in Fig. 13 (top figure). Table IV
compares the estimates with those obtained with several other
methods previously studied in the literature. It clearly appears
that the proposed method gives similar segmentation models.
However, it has the advantage to be able to handle signals
coming from different sensors. To illustrate this point, the data

Fig. 13. Segmentations of 1-D (top) and 2-D (middle and bottom) real speech
data (N = 200 and N = 600).

have been converted into stereo measurements
with and by using
a standard mono–stereo converter. The change-point posterior
distributions for the two signals and have been computed
with the proposed algorithm with . The segments for
the two time series can be obtained by keeping the largest
values of the change-point posteriors (corresponding to the
estimated change-point numbers , 1,2). The results
are presented in Table IV and in Fig. 13 (middle and bottom
plots). They are in good agreement with the 1-D segmentation.
Note, however, that the segmentation of stereo signals does
not estimate the first change since it is not
significant in both sequences. Finally, it is interesting to point
out that running 1 iteration of the joint segmentation algorithm
takes approximately 30 s for a MATLAB implementation on a
2.8-GHz Pentium IV.

VII. CONCLUSION

This paper studied a joint Bayesian segmentation procedure
allowing to segment signals recorded from different sensors.
The proposed approach assumed that the signals can be modeled
by piecewise constant AR processes. A hierarchical Bayesian
model was defined allowing to estimate jointly the change-point
locations, the AR parameters and the noise variances for the
multiple observed signals. To circumvent the complexity of the
unknown parameters distributions, an appropriate Gibbs sam-
pler was proposed to simulate samples distributed according
to the posteriors of interest. The proposed algorithm was ini-
tially developed for AR signals with known orders. However,
an extension to models with unknown orders was also presented.
Two applications were finally investigated: arc-tracking detec-
tion and stereo speech signal segmentation. The results obtained
in these applications are very encouraging.

Note that the assumptions regarding the observed signals are
sufficiently mild to handle a large class of other real signals such
as seismic [1] or biomedical [13] signals. Extending this work
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TABLE IV
CHANGE-POINT POSITIONS ESTIMATED BY DIFFERENT METHODS

to more general models appropriate for signals with heteroge-
neous dynamics [16], long-range-dependent data [4] or general-
ized autoregressive conditional heteroskedastic (GARCH) sig-
nals [27] would also be an interesting issue.

APPENDIX

FAST COMPUTATIONS

It is interesting to notice that the matrices and ,
and the variable defined in (15) could be computed fol-
lowing the implementations described in [17]. We note

.

Algorithm 3: Fast Computations of

• Compute .
• Compute Cholesky’s factors such as

.
• Compute .
• Solve the system for .
• Compute .

Such implementations allow us to develop a strategy to
sample according to in
the effective following scheme.

Algorithm 4: Fast Multivariate Gaussian Sampling of

• Sample an i.i.d. vector according to .
• Solve the system for .
• Solve the system for .
• Compute .

Another advantage of this scheme is that it is not necessary to
compute directly the determinant of the matrices that ap-
pear in (14). Indeed, , where are upper
triangular matrices whose determinants can be computed very
easily.
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