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Bayesian Inference

Posterior Distribution

(@) £ p(x|y; 0) = p(y|z; 0)p(z; 0)

p(y;0)
Notations
» = [z1,...,zx]": unknown vector of interest
> y=[y1,...,ym]": observation vector associated with x

> 0: vector gathering the deterministic parameters and hyperparameters of
the statistical model

Vocabulary
> p(y|x; 0): likelihood of the statistical model
> p(x; 0): prior distribution assigned to the vector x

> p(x|y;0): posterior distribution of interest
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Bayesian Inference

Many interesting properties
> Possibility of computing uncertainty measures such as confidence intervals

» Multiple estimators of &: maximum a posteriori (MAP), minimum mean
square error (MMSE), posterior median (robustness), ...

» Model selection: determine the model order, the number of unknown
parameters, ...
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Denoising

Problem of interest

arg min, o [ly — 2| + Ao (e)

> Various regularizations: TV, {1, {p, ...

» Other data fidelity terms might be considered

Noisy TV Denoised
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Deconvolution

Problem of interest

argming cgn |y — He|* + Ao()

> H is a blurring operator

> Possibility of considering various regularizations: TV, {1, £, ...
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Other applications
Super-resolution, compressed sensing

arg ming cpn ||y — SHz|* + \p(x)

where S is a decimation matrix, a sensing matrix, ...

Ground truth (left), Observed image (middle), Reconstruction (right).
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The Gibbs Sampler

General Principle
To sample according to a distribution 7(z) with @ = (21, ...,zn), one can use
the following idea
> Initialization: generate a vector = (z1,...,xn) according to an initial
proposal g
» Sample according to the full conditional distributions of the target
distribution 7
7T7;(Z7;|.’121, ey Li—1, L1y e e oy a:N)

fori=1,2,...,N.

Remarks
» Asymptotic convergence to the distribution of interest m(x)
> Requires to know the conditional distributions of m

> Acceptance rate of each draw equal to 1.
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The Gibbs Sampler

Limitations

>

| 4

>

>

Variables x; strongly correlated
High-dimensional vector x
The conditional distributions can be known but difficult to sample

Difficulties to escape from local minima of 7(x)

References

>

>

C. Y. Chi, J. M. Mendel, Improved maximum likelihood detection and estimation of
Bernoulli-Gaussian processes, IEEE Trans. Inf. Theory, vol. 30, pp. 429-434, March 1984.

M. Lavielle, Optimal segmentation of random processes, IEEE Trans. Signal Process., vol.
46, no 5, May 1998.

S. Bourguignon, H. Carfantan, Bernoulli-Gaussian spectral analysis of unevenly spaced
astrophysical data, in Proc. SSP, Bordeaux, France, 2005.

T. Veit, J. Idier, Rééchantillonnage de I'échelle dans les algorithmes MCMC pour les
problémes inverses bilinéaires, in Proc. GRETSI, Troyes, 2007.

G. Kail, J.-Y. Tourneret, N. Dobigeon and F. Hlawatsch, " Blind Deconvolution of Sparse
Pulse Sequences under a Minimum Distance Constraint: A Partially Collapsed Gibbs Sampler
Method,” IEEE Trans. Sig. Process., vol. 60, no. 6, pp. 2727-2743, June 2012.
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The Gibbs Sampler

Simple tricks
» Block Gibbs sampler

» Use appropriate moves to accelerate the convergence

Metropolis-within-Gibbs sampler |

Given z(*),
1. Sample according to the proposal z: ~ g(z|z®).
2. Acceptance-Rejection

LD _ )3 with prob. p(x®), z;)
() with prob. 1— p(x®, z;)

with

(@, 2) :min{“(z) q(z|2) 1} .

m(x) q(z|z)
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Example: Spectral Analysis of Astrophysical Data

Reference

» S. Bourguignon, H. Carfantan, Bernoulli-Gaussian spectral analysis of
unevenly spaced astrophysical data, in Proc. SSP, Bordeaux, France, 2005.
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Fig. 5. Simulation results with 2 close spectral lines (o).
Left: SMLR solution. Right: X +o5.
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Partially Collapsed Gibbs Sampler (PCGS)

General Principles
Three operations that do not change the asymptotic distribution
» Marginalization: replace a conditional distribution of 7 by sampling a
variable that was conditioned, e.g.,

replace 7(A|B, C) by w(A, B|C)

» Permutation
» Trimming: remove some consecutive draws of variables when these
variables are not conditioned

Références
> D. A. Van Dyk and T. Park, “Partially Collapsed Gibb Samplers: Theory and Methods,” J.
American Statistical Association, vol. 103, pp. 70-796, 2008.

» T. Park and D. A. Van Dyk, “Partially Collapsed Gibb Samplers: lllustrations and
Applications,” J. Computational Graphical Statistics, vol. 18, pp. 283-305, 2009.
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Partially Collapsed Gibbs Sampler (PCGS)

Standard Gibbs Sampler
» 7(A|B,C)
» 7(B|A,C)
» 1(C|A, B)

Marginalization
» w(A,C|B)
» m(B|A,C)
» 7(C|A, B)

Permutation
» 7(A,C|B)
» m(C|A, B)
» m(B|A,C)

14/ 43



Slides BASP'2019

Partially Collapsed Gibbs Sampler (PCGS)

Trimming and permutation
» w(A|B)
» 7(BJA,C)
» 7(C|A, B)

Remarks

» The variable C' has disappeared in the first simulation, which can
accelerate convergence

> Necessity of being able to marginalize with respect to the variable C

» Example of application
C. Lin, C. Mailhes and J.-Y. Tourneret, "P- and T-Wave Delineation in ECG Signals Using a

Bayesian Approach and a Partially Collapsed Gibbs Sampler,” IEEE Trans. Biomed. Eng.,
vol. 57, no. 12, pp. 2840 - 2849, Dec. 2010.
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ECG Delineation
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Typical example
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[llustration of improved convergence for the PCGS
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Fig. 3. Detection/estimation performance versus the number of iterations: (a) Empirical NMSE of &/, (b) normalized average error of B= ||B||2. (c) empirical

NMSE of 4/.
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Alternatives

Other ideas

» Simulated Tempering: introduce a “temperature” as in simulated
annealing, i.e., consider a sequence of distributions

mi(@) = exp @@)

» Exchange some information from several chains generated in parallel
Population Markov Chain Monte Carlo, Metropolis Coupled Markov Chain
Monte Carlo (MCMCMC), ...

» Population Monte Carlo

|
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Alternatives

References

> O. Cappé, A. Guillin, J-M. Marin, and C. P. Robert. Population Monte Carlo. J. Comput.
Graph. Statist., vol. 13, no. 4, pp. 907-929, 2004.

» Radford M. Neal, “Sampling from Multimodal Distributions Using Tempered Transitions,”
Statist. Comput., vol. 6, no. 4, pp. 353-366, Dec. 1992.

» P. Chen, James D. B. Nelson and J.-Y. Tourneret, “Toward a Sparse Bayesian Markov
Random Field Approach to Hyperspectral Unmixing and Classification,” IEEE Trans. Image
Process., vol. 26, no. 1, pp. 426-438, Jan. 2017.

» C. J. Geyer and E. A. Thompson, “Annealing Markov chain Monte Carlo with applications to
ancestral inference,” J. Amer. Stat. Soc., vol. 90, no. 431, pp. 909-920, 1995.

» K. B. Laskey and J. W. Myers, “Population Markov Chain Monte Carlo,” Mach. Learn., vol.
50, pp. 175-196, 2003.

» F. Costa, H. Batatia, T. Oberlin, C. D'Giano and J.-Y. Tourneret, “Bayesian EEG Source
Localization Using a Structured Sparsity Prior,” Neuroimage, vol. 144, Part A, pp. 142-152,
Jan. 2017.
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Monte Carlo Methods Based on the Langevin Diffusion

Langevin diffusion on RY
dX(t) = %Vlogﬂ (X(8)]dt + dW(t), X(0) = o € RV, 1)

where W is a Brownian motion on R¥.

Under appropriate conditions, X (t) converges in distribution to = when ¢ — oo,
and can thus lead to an interesting sampling strategy for .

Remark 1: Good convergence properties when — log 7 is strongly convex, even
in very high dimension.

Remark 2: Slow convergence when 7 is heavy-tailed (e.g., if X (¢) is assigned
an £, prior with ¢ < 1).
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Monte Carlo Methods Based on the Langevin Diffusion

Unfortunately, sampling X (¢) according to the previous differential equation is
generally difficult.

We can consider a discrete approximation, e.g., Euler-Maruyama
XD = x® 4 gVIOgﬂ' (X(t>) V6 s, Zmi1 ~ N(O,Ix)  (2)
where § is a discretization parameter.

Assuming some regularity conditions for 7 and ¢, fast convergence of (2) to a
distribution close to 7 [Durmus and Moulines, 2015].
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Numerical illustrations

Histograms obtained for a sample size equal to 10000 generated by ULA.
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Metropolis Adjusted Langevin Algorithm (MALA)

In MALA, the approximation error is corrected by an MH step ensuring that
m(x) is the invariant distribution of the Markov chain.

This acceptance step reduces the asymptotic bias and increases the variance of
the generated sample. Thus there is a possible increase of the mean square
error at a given time instant.

Good convergence properties are obtained for an acceptance rate p(d) = 0.6.

To adjust § automatically, one can introduce in MALA a stochastic
optimization method to minimize the energy (p(6) — 0.6)?, leading to

pane Ks, (,|X(t))

dt41 =0t +ver1[0c — (pmm(t + 1) — 0.6)]

where K is the MALA kernel with a stepsize d, pmmu(t) is the acceptance
ratio of the MH step at iteration ¢, and {v;}¢2; is a decreasing sequence.
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Riemannian MALA

Improve the convergence speed of MALA by replacing ¢ by a matrix 3(x)
leading to the following update

X(H_l) _ X(t) + 3 (X(t))Vlogw (X(t)) + \/MZm+l (3)

Zmi1 ~ N(0,In)

This update can be obtained by a Langevin diffusion on a Riemannian Manifold
with a metric defined by the matrix 3(x) [Girolami and Calderhead, 2011].

Riemannian and Euclidean gradients are related by Vg(z) = X (x)Vg(x). Idea
close to gradient preconditioning in optimization.
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Riemannian and Adaptive MALA

Standard choices of matrices X

1.

Inverse Fisher information matrix ( “natural” metric) <= optimization by
natural gradient [Girolami and Calderhead, 2011].

Positive semidefinite version of the inverse Hessian matrix
[Zhang and Sutton, 2011] [Betancourt, 2013] <= Newton optimization.

. Inverse curvature of a quadratic majorant [Marnissi et al., 2014] <=

Optimization by majoration-minimization.

Optimise X online to learn the covariance matrix associated with m(x)
[Atchadé, 2006].
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Simulation results

2D tomographic inversion - robust total variation prior

p(aly) o exp [~|ly — Fx||* /20" — Bpr (| Vaz|-2)]

An adaptive MALA algorithm is used to compute the confidence region
Cx ={x: p(x|y) > Yo} such that P [z € Culy] = 1 — «, which can be used as a
measure of uncertainty for some specific parts of the image.

40 60 80 100 120

A posteriori mean lower bound upper bound
(tumor intensity: 0.30) (tumor intensity: 0.27) (tumor intensity: 0.33)
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Hamiltonian Monte Carlo (HMC) Method

Auxiliary Gaussian vector w ~ N (0, ) defined in RY.

Augmented distribution 7(x, w) oc 7(x) exp(—sw” = 'w), whose marginal
distribution is the target distribution 7 ().

The HMC method is based on the property according to which the trajectories
defined by “Hamiltonian dynamics” preserve the level sets of 7(x, w).

31/ 43



Slides BASP'2019

Hamiltonian Monte Carlo Method

An initial point (g, wo) € R?*Y for the differential equations

c(lT;t: = —Vylogn(z,w) =3 'w
o (4)
T Vg logn(x, w) = Vg log m(x)

generates a point (x:, w:) such that 7(x¢, wt) = 7(xo, wo). In other words,
the deterministic Hamiltonian proposal admits 7(x, w) as invariant distribution.

Combining (4) with the sampling step w ~ N'(0,X), whose invariant
distribution is 7(x, w), produces an ergodic Markov chain.

To obtain vectors distributed according to w(x), the augmented state
(®,w®) can be projected onto the original space by removing w®.
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Hamiltonian equations cannot be solved analytically.
Leap-frog approximation [Neal, 2013]
wt+/D g ® 4 g V. log (mm)
2 (t+9) =2 £ 5n Lt/ (5)
w9 = (/2 4 gvm log (w(tJ”;))
where the parameter § is used to control the discretization stepsize.

The approximation error is corrected by an MH step ensuring that 7(x, w) is
the invariant distribution of the Markov chain.

Remark: if 6 = ¢, HMC and MALA algorithms are equivalent.
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Example: Image Restoration with Poisson Noise

Scaling properties of several samplers
» Unadjusted Langevin algorithm (ULA)
» Metropolis adjusted Langevin algorithm (MALA)
» Hamiltonian Monte Carlo (HMC)
» No U-turn Hamiltonian Monte Carlo (NUTS)
» Bouncy particle sampler (BPS)

> Non-reversible rejection-free strategy

Reference

> J. Tachella et al., Bayesian Restoration of High-Dimensional
Photon-Starved Images, in Proc. Eusipco, Roma, Italy, 2019.
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Image Restoration with Poisson Noise

Ground Truth. Noisy Image. Restored Image.
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Limitations of Langevin and Hamiltonian MCMC Algorithms

> Geometric convergence of ULA, MALA and HMC is only guaranteed when
Vlog 7 is Lipchitz continuous with a Lipchitz constant L > 2571,

» For example, MALA and HMC can fail, e.g., when 7(x) o exp (—v|z|?)
with ¢ > 2, or ¢ =2 and § > 2y~ 1.

A A K
A A

< L

MALA HMC MALTA S-MMALA

Generation according to 7 () o exp{7m4} with MALA, HMC, truncated MALA [Roberts and Tweedie, 1996], and Riemannian
MALA (S-MMALA) [Girolami and Calderhead, 2011].
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Proximal Langevin Algorithms

Proximal Langevin Algorithms use a regularized version of Langevin diffusion
[Pereyra, 2015, Durmus et al., 2016]

x> dX?:%Vlogm (X?) dt +dWs, 0<t<T, X™(0)= o,

where log 7y is the concave Moreau envelop of log m

logma(x) = sup [logm(u) — (20) "Ml — w||§] .
u€eR?

Remark 1: if log 7 is concave, then log my () is A-Lipchitz differentiable.

Remark 2: X* — X when A — 0, which provides an interesting strategy to
sample approximately according to .
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Proximal Langevin Algorithms
The proximal ULA algorithm is defined from this discrete approximation of X*
Xﬁ%ﬂ =(1- %)X’:\n + %proxl):)gw{XrAn} + V26 Z i1
based on the equality Vlogmx(x) = [x — proxﬁ)gﬁ(m)]/)\, where
prox1>;g7r = argmax, cga [log m(u) — (2A) | — :l:||§] .

In the proximal MALA algorithm, the approximation error is corrected at each
MH step with the target distribution 7.

A ity e oyl

MALA HMC MALTA S-MMALA Prox. MALA

Generation according to 7 () o< exp{—ac4} avec MALA, HMC, truncated MALA [Roberts and Tweedie, 1996], Riemannian MALA
(S-MMALA) [Girolami and Calderhead, 2011], and proximal MALA [Pereyra, 2015].

39/ 43



Slides BASP'2019

Outline

v

Part 1: Inverse Problems for Image Processing

v

Part 2: The Gibbs Sampler: Blocking, Moving, Collapsing
Part 3: Langevin and Hamiltonian MCMC

Part 4: Proximal MCMC Algorithms

Part 5: Conclusion

v

v

v

40/ 43



R

Slides BASP'2019

Conclusion

The main stochastic simulation methods piloted by optimization include
» Langevin MCMC

» Hamiltoninan MCMC
» Proximal MCMC

Optimization will be clearly important in the near future to build new MCMC methods
adapted to high-dimensional problems.

Thanks for your attention! J

Assistant Professor Position in Medical Imaging in the University of
Toulouse (Oct. 2019). Please contact me!
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