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Abstract—The concept of delay/Doppler (DD) altimetry (DDA)
has been under study since the mid-1990s, aiming at reducing
the measurement noise and increasing the along-track resolution
in comparison with the conventional pulse-limited altimetry. This
paper introduces a new model for the mean backscattered power
waveform acquired by a radar altimeter operating in synthetic
aperture radar mode, as well as an associated least squares (LS)
estimation algorithm. As in conventional altimetry (CA), the mean
power can be expressed as the convolution of three terms: the flat
surface impulse response (FSIR), the probability density function
of the heights of the specular scatterers, and the time/frequency
point target response of the radar. An important contribution
of this paper is to derive an analytical formula for the FSIR
associated with DDA. This analytical formula is obtained for a
circular antenna pattern, no mispointing, no vertical speed effect,
and a uniform scattering. The double convolution defining the
mean echo power can then be computed numerically, resulting
in a 2-D semi-analytical model called the DD map (DDM). This
DDM depends on three altimetric parameters: the epoch, the
sea surface wave height, and the amplitude. A multi-look model
is obtained by summing all the reflected echoes from the same
along-track surface location of interest after applying appropriate
delay compensation (range migration) to align the DDM on the
same reference. The second contribution of this paper concerns
the estimation of the parameters associated with the multi-look
semi-analytical model. An LS approach is investigated by means
of the Levenberg–Marquardt algorithm. Simulations conducted
on simulated altimetric waveforms allow the performance of the
proposed estimation algorithm to be appreciated. The analysis
of Cryosat-2 waveforms shows an improvement in parameter
estimation when compared to the CA.

Index Terms—Altimetry, Cryosat, delay/Doppler (DD) map
(DDM), least squares (LS) estimation, synthetic aperture radar
(SAR) altimetry.
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I. INTRODUCTION

FOR more than 20 years, conventional altimeters like
Topex, Poseidon-2, or Poseidon-3 have been delivering

waveforms which are used to estimate many parameters such
as the range between the satellite and the observed scene. The
theoretical model for this conventional altimetric waveform is
provided by a convolution between three terms that are the
flat surface impulse response (FSIR), the probability density
function (PDF) of the heights of the specular scatterers, and
the point target response (PTR) of the radar [1], [2]. Several
analytical formulations for the FSIR have been proposed in the
literature, leading to the Brown model [1] and to more elabo-
rated altimetric waveform models [3]–[5]. Many other studies
have been devoted to improve the oceanic analytical model in
order to get better estimates of the geophysical parameters. This
improvement has been obtained by using different PDF and
PTR formulations [2], [6], [7]. Recently, a great effort has also
been devoted to process coastal waveforms in order to move the
altimetric measurements closer to the coast [8]–[11].

The delay/Doppler (DD) altimetry (DDA) proposed in [12]
fits into this logic of measurement improvement and has two
main objectives. The first one is to reduce the measurement
noise by increasing the number of observations (looks) which
provide better geophysical parameter estimates. The second
one is to increase the along-track resolution which allows the
measurements to remain valid until a distance of about 300 m
from the coast [while it was about 10 km for conventional
altimetry (CA)]. All of these advantages have led to consider
DDA in many current and future satellite missions. The first
satellite exploiting DDA is the Cryosat-2 satellite which has
on board a synthetic aperture interferometric radar altimeter
(SIRAL) instrument that includes a DDA mode. Other future
missions including DDA are Sentinel-3, Jason Continuité de
Service (Jason-CS), and Surface Water Ocean Topography
(SWOT), which show the importance of this new technology.

DDA requires coherent correlation between pulses [12],
which is obtained by transmitting pulses with a high pulse-
repetition frequency (PRF). For instance, the SIRAL transmits
bursts with a frequency of about 85 Hz [13]. Each burst con-
tains 64 coherent pulses (transmitted at a PRF of 18 182 Hz)
which are processed to obtain the DD map (DDM), as shown
in Fig. 1. Note that transmitting 64 coherent pulses results in
64 spectral Doppler beams in the DDM, as illustrated in Fig. 1.
The exploitation of the DDA oceanic information is based on
the analysis of the reflected oceanic waveform called multi-
look echo and obtained by applying Doppler processing (slant
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Fig. 1. Configuration of a DD altimeter and construction of a DDM.

range correction and multi-looking) to the DDM. This multi-
look waveform has a shape that is different from a CA echo,
which requires developing a new altimetric signal model. Many
studies have been conducted by different teams for achieving
this goal. For instance, numerical models for DD waveforms
have been proposed in [14] and [15], whereas other models
were developed in the Synthetic aperture radar Altimetry MOde
Studies and Applications (SAMOSA) project [16], [17].

The first contribution of this paper is the derivation of a
new model for DDA. An analytical model for the FSIR is
studied based on a geometrical approach. The proposed FSIR
model includes Earth curvature and considers a circular antenna
pattern, no mispointing, and a Gaussian approximation for the
antenna gain as in [1]. The resulting analytical expression of
the FSIR is numerically convolved with the PDF of the sea
wave height and the PTR of the radar. This yields the mean
power of a DDA waveform which depends on three parame-
ters: the epoch τ , the significant wave height (SWH), and the
amplitude Pu.

The second contribution of this paper is to propose and
validate an algorithm for estimating the parameters of the
proposed DD semi-analytical model. Many different algorithms
have been investigated to estimate the parameters of CA
waveforms. These algorithms are, for instance, based on the
maximum-likelihood principle [6], [18] or on least squares
(LS) techniques [19], [20]. This paper proposes to estimate the
geophysical altimetric parameters by an LS approach based on
the Levenberg–Marquardt algorithm. The performance of the
estimated parameters is analyzed in different scenarios includ-
ing different noise configurations. Moreover, the evaluation of
the estimated parameters, on simulated and real Cryosat-2 data,
provides a quantitative measure of the benefits of DDA when
compared to CA.

This paper is organized as follows. Section II presents the
transition from the conventional altimetric model to the pro-
posed DD semi-analytical model. The proposed LS estimation
procedure is then introduced in Section III. Section IV validates

Fig. 2. Geometry used for computing the FSIR.

the proposed model and algorithm with simulated data. The
analysis of results associated with real Cryosat-2 waveforms is
presented in Section V. Conclusions and future work are finally
reported in Section VI.

II. SEMI-ANALYTICAL MODEL FOR DELAY/DOPPLER

ALTIMETRY

This section first describes the CA model and then introduces
the proposed semi-analytical model for DD waveforms. The
multi-look processing and the corruption of the waveforms by
speckle noise are also described.

A. Conventional Altimetry

In CA, the mean power P (t) is expressed as the convolution
of three terms: the FSIR, the PDF of the heights of the specular
scatterers, and the PTR of the radar

P (t) = FSIR(t) ∗ PDF(t) ∗ PTRT (t) (1)

where t is the two-way incremental ranging time, i.e., t =
t′ − (2h/c), with t′ the travel time of the echo from the in-
stant of transmission, h the altitude of the satellite, and c the
speed of light. The following sections describe the three terms
in (1).

1) Flat Surface Impulse Response: The FSIR only depends
on time and is obtained by integrating over the illuminated area
of the surface as follows [1]:

FSIR(t′) =
λ2

(4π)3Lp

∫
R+×[0,2π[

δ
(
t′ − 2r

c

)
G2(ρ, φ)σ0

r4
ρ dρ dφ

(2)

where ρ and φ are the radius and the angle of the polar
coordinates, respectively, Lp is the two-way propagation loss,
λ is the wavelength, G is the power gain of the radar antenna,
δ(t) is the delta function, σ0 is the backscatter coefficient of the
surface, and r =

√
ρ2 + h2 is the range between the satellite

and the observed surface (see Fig. 2). The integral with respect
to ρ in (2) can be expressed in closed form when consider-
ing a constant value of σ0, an antenna without mispointing
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Fig. 3. Circles of propagation and Doppler beams. In CA, the FSIR is obtained
by integrating over the propagation circles. In DDA, the FSIR is obtained by
integrating the energy in the intersection between the propagation circles and
the Doppler beams.

angles with respect to the z- and x-axes (ξ = 0◦ and φ̃ = 0◦

in Fig. 2), and the same gain antenna as in [1], i.e., a Gaussian
approximation and a circular antenna pattern. The FSIR is then
given by

FSIR(t) =
Pu

2π

(
1 +

ct

2h

)−3

U(t)

2π∫
0

exp

(
−4ct

γh

)
dφ (3)

where γ = 1
2 ln 2 sin

2 θ3dB is an antenna beamwidth pa-
rameter, θ3dB is the half-power antenna beamwidth, Pu =
(λ2G2

0cσ
0)/[4(4π)2Lph

3] is the waveform amplitude, G0 is
the antenna power gain at boresight, and U(·) denotes the
Heaviside function (U(t) = 1 if t ≥ 0 and U(t) = 0 if t < 0).
Equation (3) shows that FSIR(t) is obtained by integrating an
appropriate function on a circle whose radius ρ(t) depends
on time, i.e., for each time instant t, we have a given radius
(see Fig. 3). This radius increases with time since ρ(t′) =√
(t′c/2)2 − h2 which reduces to ρ(t) �

√
hct when consider-

ing the approximation (ct/h) � 1 (valid for spaceborne altime-
try [1]). Note also that, in CA, we integrate all along the circle
of radius ρ (since φ ∈ [0, 2π]) without having a distinction
between across-track and along-track directions (axes x and y
in Fig. 3, respectively). The conventional FSIR is finally given
by [1], [5]

FSIR(t) = Pu exp

(
−4ct

γh

)
U(t) (4)

where (1 + (ct/2h))−3 has been approximated by 1 as in [1]
(since (ct/h) � 1).

2) PDF of the Heights of the Specular Scatterers: The PDF
of the specular points is generally approximated by a Gaussian
density whose standard deviation (STD) is related to the aver-
age SWH [1], [5]

PDF(t) =
1√
2πσs

exp

(
− t2

2σ2
s

)
(5)

with σs = SWH/(2c).

Fig. 4. Doppler beam geometry.

3) Radar System PTR: The radar PTR is generally ex-
pressed as a squared cardinal sine as follows [5]:

PTRT (t) =

∣∣∣∣∣ sin
(
π t

T

)
π t

T

∣∣∣∣∣
2

(6)

where T = 1/B is the sampling period and B is the reception
bandwidth of the altimeter.

B. Delay/Doppler Altimetry

As in CA, the mean power P (t, f) of a DD echo can be
expressed as the convolution of three terms: the FSIR, the PDF,
and the time/frequency PTR [21], [22]. However, unlike the
signal P (t) in (1), the obtained signal P (t, f) depends on time
and Doppler frequency as follows:

P (t, f) = FSIR(t, f) ∗ PDF(t) ∗ PTR(t, f) (7)

where f denotes the Doppler frequency. The PDF is the same
as that in (5), and the two other terms are introduced in the
following.

1) Flat Surface Impulse Response: The DDA is pulse lim-
ited across-track and beam limited along-track as first observed
by Raney in [12]. It was proposed in order to increase the along-
track resolution by considering the Doppler effect resulting
from the satellite velocity. Indeed, the nth Doppler frequency
fn is expressed by

fn =
2

λ

�r · �vs
|�r| =

2vs
λ

cos(θn) (8)

where �vs is the satellite velocity and θn is shown in Fig. 4. This
figure also shows that

cos(θn) =
yn(t)

rn(t)
=

yn(t)√
ρ2(t) + h2

, for t ≥ 0 (9)

where yn(t) represents the coordinate of the nth along-track
beam. Combining (8) and (9) leads to the following expression
of yn(t) as a function of t and fn:

yn(t) =

(
λfn
2vs

)√
ρ2(t) + h2. (10)
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This equation clearly shows how the coordinate of the along-
track beam depends on time. An approximation of (10) is
obtained by considering ρ(t) � h which is a valid assumption
for near-vertical small-angle geometry as explained in [12] (see
[23] for more details about this approximation). The simplified
width of the Doppler beam is then given by [12]

yn =
hλ

2vs
fn (11)

with fn = (n− 32Nf − 0.5)F/Nf , for n ∈ 1, . . . , 64Nf ,
where F is the frequency resolution obtained from the burst
length τb = 1/F (see Fig. 1) and Nf is the frequency oversam-
pling factor. This equation shows that the along-track direction
(axis y) can be divided into rectangular beams corresponding to
different Doppler frequencies displayed in Fig. 3.

Fig. 3 also shows that the computation of the FSIR for DDA
is obtained by integrating φ into rectangular beams defined
by fixed coordinates yn and yn+1 (we will consider the time-
independent Doppler coordinate given in (11) in the rest of
this paper). Straightforward computations show that the angles
associated with yn and yn+1 are defined by

φt,n =Re

[
atan

(
yn√

ρ2(t)− y2n

)]

φt,n+1 =Re

⎡
⎣atan

⎛
⎝ yn+1√

ρ2(t)− y2n+1

⎞
⎠
⎤
⎦ (12)

where atan(·) is the inverse tangent function and Re(x) denotes
the real part of the complex number x. As a consequence, the
DDA FSIR can be written1

FSIR(t, n) =
Pu

2π
U(t)

∫
Dt,n

exp

(
−4ct

γh

)
dφ (13)

where Dt,n = [φt,n, φt,n+1] ∪ [π − φt,n+1, π − φt,n]. Note
that the conventional FSIR can be obtained by considering the
angles φt,n+1 = π/2 and φt,n = −π/2 in Dt,n. This means
that the conventional FSIR given in (4) can also be obtained
by summing the signals of all the Doppler beams before range
migration, i.e., by summing the DDM rows (see Fig. 6(b)—
bottom-as an example of DDM). As a consequence, (13) leads
to the following analytical expression of the FSIR:

FSIR(t, n) =
Pu

π
exp

(
−4ct

γh

)
(φt,n+1 − φt,n)U(t) (14)

for n = 1, . . . , 64Nf . Note that one has to divide the time t
in (4) and (14) by the curvature factor α = 1 + (h/R) = 1.11,
where R = 6378137 m is the Earth radius, to account for the
Earth curvature (see [23], [25], and [26] for more details about
Earth curvature).

2) Radar System PTR: The radar system PTR is composed
of temporal and Doppler frequency dimensions. In this paper,

1A related approach assuming a rectangular shape for the compressed pulse
and a rectangular antenna pattern was investigated in [24].

Fig. 5. Logarithm of the oversampled 2-D radar system PTR
(log[PTR(t, f)]).

we assume that PTR(t, f) is the multiplication between a
temporal function PTRT (t) (corresponding to the radar PTR)
and a frequency function PTRF (f) (resulting from the Doppler
processing). This assumption can be justified by recent results
available in the literature [21], [22], [27] or by a comparison
with the measured Cryosat-2 PTR (see [23] for more details).
The temporal PTR is provided in (6), whereas PTRF (f) can be
approximated accurately by the following squared sine cardinal
function:

PTRF (f) =

∣∣∣∣∣∣
sin

(
π f

F

)
π f

F

∣∣∣∣∣∣
2

. (15)

The resulting PTR is then given by

PTR(t, f) = PTRT (t)PTRF (f) (16)

which is displayed in Fig. 5. It is interesting to note that
another PTR could be used without modifying significantly the
proposed approach (e.g., PTR(t, f) might be obtained from real
measurements). Indeed, the PTR will be convolved numerically
with the analytical FSIR derived in this paper and the PDF
defined in (5).

C. Reflected Power

The reflected DDA power P (t, f) (resp. P (t) for CA) is
obtained by a numerical computation of the double convolution
(7) [resp. (1)] between the analytical expressions (14), (5), and
(16) [resp. (4), (5), and (6)]. This convolution is conducted
after oversampling the analytical functions to better represent
the cardinal sines. Appropriate temporal and frequency over-
sampling factors have been determined by cross-validation,
yielding Nt = 16 and Nf = 15. The resulting oversampled
signal is first delayed by the epoch τ and then undersampled
to obtain the required 64 × 128 DDM. The proposed model (7)
is semi-analytical in the sense that an analytical formulation is
proposed for the FSIR but that the double convolution in (7) is
computed numerically. Note that the proposed semi-analytical
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Fig. 6. Construction of the DDM.

model might be modified by introducing a measured PTR(t, f)
and/or a PDF different from (5).

D. Multi-looking

Section II-B derived an analytical model for the FSIR(t, f)
which is convolved by PDF(t) and PTR(t, f) to compute the
reflected power P (t, f). We also showed previously that each
time instant t is related to a circle of radius ρ(t) while each
Doppler frequency is related to a rectangular along-track beam.
Fig. 6 summarizes the construction of a DDM. The signal
of a given beam is obtained by summing the energies of all
scatterers belonging to this beam. For instance, the energy
of the signal corresponding to time instant “k” and Doppler
beam “n” is obtained by summing the energies of all scatterers
belonging to the intersection of the circle of radius ρ(k) with the
rectangular nadir beam “n.” Note that the rises of the reflected
powers in the different Doppler beams occur at different time
instants (according to Fig. 6, the rise occurs at time instant k
for the nadir beam, at time instant 3k for beams “n+ i” and
“n− i,” etc.). This time shift is related to the range between the
satellite and each Doppler beam. Fig. 6(b) shows an example of
a DDM obtained by the proposed model. The parabolic shape of
this waveform results from the time shifts between the different
beams. The multi-looking process aims at gathering all the
reflected energies from a single beam. For that, we first have
to compensate the time differences between the different beams
in order to have signals rising at the same time instant k. This
procedure is called delay compensation [12] or range migration.
The delay of each beam δrn is obtained by the difference
between the modulus of the position vector rn =

√
h2 + y2n

(range between the satellite and the Doppler beam n) and the
minimum satellite–surface distance h [12]

δrn = rn − h =
√

h2 + y2n − h. (17)

Fig. 7. (Left) DDM after delay compensation, (middle) migrated signals for
all Doppler beams, and (right) the corresponding multi-look waveform.

Note that (17) can be simplified (as proposed in [12]) by
considering yn � h as follows:

δrn = h

√
1 +

(yn
h

)2

− h � y2n
2h

=
hλ2

8v2s
f2
n. (18)

Note also that the Earth curvature can be considered by intro-
ducing a factor α, yielding [12]

δrn =
√

h2 + αy2n − h � α
hλ2

8v2s
f2
n. (19)

After delay compensation, the signals associated with the
Doppler beams are summed to obtain the multi-look waveform
as follows [22] (see Fig. 7):

s(t) =

64∑
n=1

P (t− δtn, fn) (20)

where δtn = 2δrn/c is the delay compensation expressed in
seconds. This result is obtained by assuming that each ground
Doppler beam is observed by 64 different Doppler beams where
each of them results from averaging L observations (see also
the next section). Note that the procedure is quite different for
real waveforms where we have to collect the reflected energies
of different bursts. For example, the selected scene’s beam may
reflect energy coming from a nadir beam (beam #33) for the
burst i1, from beam #34 for the burst i2, etc. Note that this
stacking procedure aims at reducing the noise effect and that
it assumes that the geophysical parameters of the selected beam
do not change from one burst to another.

An example of the resulting DDA vector s = (s1, . . . , sK)T ,
with K = 104 samples, is shown in Fig. 8 and compared with
the CA echo. The DD echo has a peaky shape around the epoch
τ because of delay compensation. This peaky shape was first
quantified in [28] as characteristic of a beam-limited altimeter.

E. Speckle Noise

In order to generate realistic data similar to Cryosat-2 echoes,
the DDM has to be corrupted by speckle noise. Following the
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Fig. 8. DD and conventional echoes for the same altimetric parameters (Pu =
1, τ = 31 gates, and SWH = 2 m).

works in [29], a multiplicative speckle noise is applied to the
DDM, leading to2

y(t) =

64∑
n=1

P (t− δtn, fn)q(t− δtn, n) (21)

where q(t− δtn, n) is a random variable distributed according
to a gamma distribution G(L, 1/L) (see [32, p. 87] for the defi-
nition of the gamma distribution) and L is the number of bursts
observing each Doppler beam (L = 4 in our simulations).

III. PARAMETER ESTIMATION

A. Estimation Algorithm

This paper proposes to estimate the parameters of the mul-
tilook waveform by using an LS procedure (as for CA [19],
[20]). The altimetric waveform y = (y1, . . . , yK)T is a noisy
version of s = (s1, . . . , sK)T which depends on the parameter
vector θ = (θ1, θ2, θ3)

T = (SWH, Pu, τ)
T (the estimation is

done under the assumption that ξ = 0◦ in both conventional
and DD models). The LS method consists of estimating the
unknown parameter vector θ as follows:

argmin
θ

G(θ) = argmin
θ

1

2

K∑
k=1

g2k(θ) (22)

where gk(θ) = yk − sk(θ) is a vector of residues. Since gk(θ)
is a complicated nonlinear function of SWH and τ , the opti-
mization problem (22) does not admit a closed-form expression.
In this paper, we propose to solve (22) using a numerical
optimization method based on the Levenberg–Marquardt algo-
rithm [33]. The parameter update of the iterative Levenberg–
Marquardt algorithm is defined by θ(i+1) = θ(i) + e(i), where
θ(i) is the estimate of θ at the ith iteration. The choice of e(i)

2In [29], a single look is assumed to follow an exponential distribution.
Moreover, and as mentioned in [30] and [31], each Doppler beam is observed
by L bursts (denoted as Nbin in [30] and [31]). Thus, the signal of each beam
results from the averaging of L observations. It results that the noise corrupting
each beam follows a gamma distribution G(L, 1/L).

is based on a Taylor expansion (at the first order) of g in the
neighborhood of θ(i)

g
(
θ(i) + e(i)

)
� l

(
e(i)

)
= g

(
θ(i)

)
+ J

(
θ(i)

)
e(i) (23)

where J(θ) = [J1(θ),J2(θ),J3(θ)] = [(∂g(θ)/∂θ1),
(∂g(θ)/∂θ2), (∂g(θ)/∂θ3)] is a K × 3 matrix representing
the gradient of g. After replacing (23) in (22) (and removing
notation (i) for brevity), the following result is obtained:

G(θ + e) � L(e) =
1

2
l(e)T l(e)

=G(θ) + eTJ(θ)Tg +
1

2
eTJ(θ)TJ(θ)e.

(24)

The descent direction e is then obtained by minimizing
L(e). By setting to zero the derivative L′(e) = J(θ)Tg +
J(θ)TJ(θ)e, we obtain

J(θ)TJ(θ)e = −J(θ)Tg. (25)

This relation is the basis of the Gauss–Newton recursion [33],
[34]. Levenberg and Marquardt proposed to add a regularization
parameter μ in (25), leading to[

J(θ)TJ(θ) + μI3

]
e = −J(θ)Tg (26)

where I3 is the 3 × 3 identity matrix. Note that the parameter μ
controls the convergence speed of the algorithm. Note also that
the derivatives appearing in J(θ) can be computed numerically
by finite difference as follows:

J i(θ) = −∂s(θ)

∂θi
� −s(θi +Δθi)− s(θi)

Δθi
(27)

with Δθ = (ΔSWH,Δτ,ΔPu)
T . In our simulations, we have

chosen Δθ = (0.05 m, 0.02 gate, 0.05)T .

B. Estimation Performance

This section introduces the criteria used to evaluate the
quality of the estimators resulting from the proposed model.
The quality of the estimation for simulated waveforms can be
measured by comparing the estimated and true parameters by
using the root-mean-square error (RMSE)

RMSE(θi) =

√√√√ 1

m

m∑
�=1

[
θi − θ̂i(�)

]2
, i = 1, . . . , 3 (28)

where θi is the true parameter, θ̂i(�) is the estimated parameter
for the �th waveform, and m is the number of simulated
waveforms. The bias and the STD of the estimator given by

Bias(θi) =
1

m

m∑
�=1

θ̂i(�)− θi = θi − θi (29)

STD(θi) =

√√√√ 1

m

m∑
�=1

[
θ̂i(�)− θi

]2
(30)
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Fig. 9. Construction of the observed echoes and related terminology.

can also be used to better analyze the obtained results. In the
case of real waveforms, the estimated DD parameters will be
compared to the estimated CA parameters.

IV. RESULTS FOR SIMULATED DATA

This section first describes how simulated echoes have been
generated. The behavior of the proposed DD model as a func-
tion of the Doppler frequency is then analyzed. The effect
of range migration on the performance of the LS estimator
is finally investigated. The estimation performances of DDA
and CA are also compared in order to illustrate the expected
improvement of the DD mode (as shown in [14] and [35] for a
simulated scene and in [21] for another Doppler model).

A. Simulation Scenario

This section describes how Cryosat-2 echoes have been
generated and introduces the denominations of the related sim-
ulated echoes. The Cryosat-2 altimeter called SIRAL presents
three modes that are the low-resolution mode (LRM), the syn-
thetic aperture radar mode (SARM), and the synthetic aperture
radar interferometric mode (SARInM) [13]. The data of the
LRM are used to generate CA echoes (also denoted by CA-
LRM echoes), while those of SARM provide DD echoes.
However, as the two modes operate separately, the collected
data do not result from the same scene and cannot be used
to compare the same scenario. Hence, the data of SARM are
also used to generate conventional echoes called in this paper
CA-SARM for conventional altimetric echoes from SARM.3

However, the resulting echoes are affected by a level of noise
that is higher than that for CA-LRM echoes. Indeed, the ob-
served CA echoes are corrupted by a speckle noise result-
ing from the incoherent summations of Lc = 90 consecutive
echoes for the Poseidon-3 altimeter [39]. The CA-SARM re-
sults from averaging approximately 32 uncorrelated echoes (the
other correlated echoes will not reduce significantly the noise
level), inducing a noise increasing factor of

√
3 between the CA

and CA-SARM echoes [40]. Fig. 9 summarizes the different
steps performed to obtain the considered simulated echoes

3These echoes are known under different names: LRM-like [22], pseudo-
LRM [36]–[38], or reduced SAR [37], [38]. The denomination CA-SARM has
been chosen for clarity.

TABLE I
SIMULATION PARAMETERS

Fig. 10. Echoes for different Doppler frequencies (0, 2, 4, and 6 kHz).
(Top) Without range migration and (bottom) with range migration. The tem-
poral scale has been oversampled by a factor of Nt = 16.

and their denominations in the rest of this paper, i.e., multi-
look (or DD), DD without migration, CA (or CA-LRM), and
CA-SARM echoes.

B. Model Analysis

This section analyzes the behavior of the reflected power as
a function of the Doppler frequency. An example of simulation
scenario corresponding to the altimetric parameters Pu = 1,
SWH = 0 m, and τ = 31 gates is summarized in Table I.
Fig. 10 shows the corresponding altimetric echoes (normalized
by the maximum of the nadir echo) for different Doppler
frequencies (0, 2, 4, and 6 kHz). As expected, the higher power
occurs at nadir, i.e., f = 0 Hz. This figure also shows that
the echo broadens as the frequency increases, which can be
explained as follows. The Doppler frequency is proportional to
the along-track distance [see (11)]. As a consequence, the high
frequencies correspond to far Doppler beams (from nadir) that
intersect the large propagation circles. However, propagation
circles have an increasing radius and a narrowing width for
increasing time [41]. This means that the Doppler beams far
from nadir intersect a lot of propagation circles (each circle
corresponds to a time instant), and thus, the reflected echoes
spread over a lot of range gates. Fig. 10 (bottom) shows an
example of DD echoes obtained after range migration (this
figure is similar to [29, Fig. 7]). Note that the leading edge of the
multi-look echo, obtained by summing the migrated echoes, is
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Fig. 11. (Top) Reflected power versus Doppler frequency for different gate
numbers; (bottom) Doppler spectra after summing the powers associated with
each Doppler frequency [sum of the columns of Fig. 7 (left)]. The frequency
scale has been oversampled by a factor of Nf = 15.

directly affected by the high-Doppler-frequency echoes because
of their large shape and slower leading edge. Considering
echoes associated with different time gates (gates 31, 51, 71, 91,
and 111), Fig. 11 (top) shows a decrease of the power according
to the Doppler frequency which is due to the weighting of
the power by the Gaussian antenna gain [14]. This figure
also shows a symmetrical shape of the echoes with respect to
the zero Doppler frequency which is due to the absence of
mispointing angle ξ = 0◦ (note that the situation can be very
different in the presence of mispointing as shown in [41]).
These results are confirmed in Fig. 11 (bottom), which shows
the Doppler spectra resulting from the summation of the powers
associated with the different Doppler frequencies.

C. Importance of Range Migration

This section is interested in analyzing the effect of range
migration on the quality of the estimated parameters. Parameter
RMSEs obtained with and without range migration (with the
same noise level, i.e., L = 4) are shown in Fig. 12 versus
SWH (additional results versus τ and Pu are available in [23]).
These RMSEs have been obtained using m = 1000 simulated
waveforms [see (28)]. The parameters SWH and τ are better
estimated by considering migrated DD echoes since the errors
on SWH and τ are reduced by �30 and �6 cm, respectively.
However, the estimation of Pu is slightly better without mi-
gration because the echo is broader and its amplitude is less
sensitive to noise.

Fig. 12 also shows the RMSEs when estimating CA echoes.
The DD RMSEs for τ and SWH (the blue curves in Fig. 12) are
lower than those obtained with CA (the black curves in Fig. 12)
which shows the interest of using the Doppler mode. However,
one can notice that CA provides better results for RMSE (SWH)
for very small values of SWH (this result was also observed in
[22]). Note that some simulation results available in [23] (and
not presented here for brevity) have shown that the proposed
estimator is unbiased and thus that the RMSEs are very close to
the STDs.

Fig. 12. Parameter RMSEs versus SWH (with Pu = 1 and τ = 31 gates)
for migrated and nonmigrated DD and conventional echoes (resulting from the
average of 1000 Monte Carlo realizations).

Fig. 13. Estimated Cryosat-2 echo using the proposed model. (Top) Real
Cryosat-2 echo superimposed with its estimation; (bottom) difference between
the real Cryosat-2 echo and its estimation.

V. RESULTS FOR CRYOSAT-2 WAVEFORMS

This section is devoted to the validation of the proposed
semi-analytical model for oceanic Cryosat-2 waveforms. The
considered waveforms were obtained in August 2011 (the esti-
mation was applied to the whole month of data) and were pro-
vided by the Cryosat-2 processing prototype developed by the
Centre National d’Études Spatiales which is doing the level 1
processing and particularly the Doppler, range migration, and
multi-looking processings [38].

Fig. 13 (top) shows an example of estimated Cryosat-2 echo
using the proposed model. This figure shows an excellent
fit between this estimated echo and the observed Cryosat-2
waveform (particularly in the leading and trailing edges of
the waveform). This result is confirmed in Fig. 13 (bottom),
which shows the error (difference) between the two echoes.
Note that the maximum difference between the real echo and
its estimation is on the order of 10%, which is a small value due
to the presence of noise (the reader is invited to consult [23] for
additional results obtained with other waveforms). Considering
the estimated parameters, the good agreement between the
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TABLE II
COMPARISON BETWEEN THE ESTIMATED PARAMETERS OF CA-SARM AND DDA

Fig. 14. Parameter estimates for 2 min of Cryosat-2 data for DD and
CA-SARM echoes. (Top) SWH; (bottom) SSHA.

Fig. 15. Correlations between the estimated SWH and SSHA parameters for
(left) CA-SARM and (right) DDA.

estimated DDA and CA-SARM parameters4 is illustrated in
Fig. 14, which shows the estimated SWH and sea surface
height anomaly (SSHA) parameters for 2 min of data (the
SSHA is obtained by applying all environmental corrections on
the estimated epoch). This agreement is confirmed in Fig. 15,
showing similar correlations between the estimated SWH and
SSHA using the two estimation procedures.

4The parameters of CA-SARM echoes have been estimated by the LS
method described in Section III, where sk(θ) = P (tk) as defined in (1).

TABLE III
IMPROVEMENT FACTORS OF DDA WITH RESPECT TO CA

Table II shows the averaged differences between the es-
timated parameters of CA-SARM and DDA. These results
are represented for SWH < 4 m since more than 90% of the
processed data satisfy this constraint. The differences between
the CA-SARM and DDA estimations are very low. Table II
also shows the averaged STDs5 for the parameters SWH and
SSHA. These STDs have been obtained by considering groups
of m = 20 successive parameters [see (30)], i.e., one value of
STD is obtained every second (the resulting STDs are known as
20-Hz STDs).6 As expected, DDA provides lower STDs
than CA-SARM, which is in agreement with the results in
Section IV-C. Note that the equivalent CA STDs can be ob-
tained by dividing the CA-SARM STDs by a factor of

√
3 as

explained previously. This provides a good evaluation of DDA
when compared to CA (used in the previous altimeters such
as in Poseidon-3). The STD improvement can be evaluated
by computing the ratio between the CA STDs and the DDA
STDs (referred to as improvement factor in Table III). At
SWH = 2 m, we obtain an SWH STD of 55 cm for CA and
43 cm for DDA, which shows an improvement factor of 1.28.
Considering SSHA, we notice a CA STD of 8.16 cm and a
DDA STD of 6.47 cm, resulting in an improvement factor
of about 1.26. Table III compares these improvement factors
with results available in the literature. The obtained results are
clearly in good agreement with those in [40] and [42] (the small
differences are due to the fact that it is not possible to reproduce
exactly the same simulation scenario).

Note finally that the STD results presented in Table II are
similar to those obtained in the simulation (see Fig. 12). The
improvement factors are also in agreement with those of sim-
ulated waveforms since we have obtained 1.24 for τ and 1.19
for SWH at SWH = 2 m. These similarities between simulated
and real data results validate the proposed model.

5The averaged STDs have been obtained by averaging the obtained STDs for
each 1-m interval of SWH.

6The 1-Hz STDs can be deduced from the 20-Hz STDs by dividing all results
by the factor

√
20.
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VI. CONCLUSION

This paper has defined a new semi-analytical model for
DDA. A geometrical approach was used for computing an
analytical expression of the FSIR. The analytical expression
was obtained under the assumptions of a circular antenna
pattern, no mispointing, no vertical speed effect, and a uniform
scattering. This analytical expression was convolved with the
PDF of the heights of the specular scatterers and the PTR
of the radar, leading to the mean power of a DD altimetric
waveform. An LS approach based on the Levenberg–Marquardt
algorithm was then proposed to estimate the parameters of DD
altimetric echoes. Simulation results performed on simulated
data showed the good potential of DDA when compared to CA
in terms of error reduction. The analysis of real Cryosat-2 wave-
forms confirmed the good performance of the proposed DD
model. Extending the results obtained in this paper to a model
including the mispointing angles is an interesting issue. This
generalization might reduce the noise level since the Cryosat-2
echoes are known to present a mispointing of about 0.1◦ in
across-track and along-track directions [43]. The consideration
of the antenna ellipticity, the satellite vertical speed effect, and a
nonconstant backscattering coefficient might also improve the
obtained performance. Finally, studying correlations between
the estimated parameters is also an important issue that would
deserve some attention.
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