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| —Source coding and communication system ‘

[ [
Overview ﬁ %

~Source Coding Channel Coding

Input
QOutput <
Signal

Basic Elements of a Digital Communication System

Economic Réle ?1 >Source Coding
Fight against the noise (error control) ?:>Channel Coding
Joint Source-Channel Coding ? 2




Source coding = data compression

To represent the source (data)

with the less code symbols as possible

and with the highest fidelity (lowest distorsion) as possible

Lossless compression: .
Enables error free decoding Imorma"o" mﬂﬂw
Unique decodability without ambiguity

Lossy compression: slgnm pmcessing

Distorsion and compression

Claude Elwood Shannon (1916 — 2001),
American electrical engineer and mathematician,
has been called “the father of information theory”,
and was the founder of practical digital circuit
design theory.




lI- Information Theory

Définition of information quantity
= = doubt quantity, linked to the event probability:

ix)=F(p(x)) with F(1)=0

2 additive quantity: o
i(xy)=i(x)+i(y)  if xand y independent ~ Spude Elwood
Therefore (1916 -2001)
The « father »

i(X): - alog(p(x)) unity: Binary Unit of Information Theory

Related to the simpliest random experience: the equiprobable binary one
I(pile)=i(face)= - a.log(1/2) = 1 binary unit = 1 binit = 1 bit

By choosing to compute the function « log » in base 2, a=1!

Thus

Information

_ . Elements of Information Theory,
|(X): - |0g2 (p(X)) bltS Thomas M. Cover and Joy A.Thomas, §
John Wiley, 1991 SIS

Other unities exist but « bits »: the most used

C. E. Shannon, « A mathematical theory of communication »,
Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.

See on web site  http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
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Entropy

[t will be crucial to be able to quantify the amount of
randomness of a probability distribution (a source !)

 Definition: The entropy H(X) of a discrete random
variable X is defined by (also denoted H(p)):

H(X) =->_p(x)log, p(x)

« The entropy of a distribution is expressed in bits.

You can view H as the expectation of -log (p(x)):
H(X) = -2, p(x) log p(x) = E, { -log p(X) }.




Some Properties of H

 always H(X)>0.

« H(X)=0 uf X 1s a ‘deterministic variable’
with p(x)=1 for one specific value xe .

 |f p(x) =1/D for D different values xe X,
then H(X) = log D.

» H(X) <log(number of xeH with p(x)>0) ;
H(X) maximum for equiprobability statistics.

« Decomposition increases entropy
H(pl,p2,....pN) > H(P,Q)



Entropy of a Bit

A completely random bit with p=(*2,%2) has
H(p) = —(*2 log Y2 + Y2 log %2) = (-2 + —Y2) = 1.
A deterministic bit with p=(1,0) has
H(p) =—(11log 1 + 0log 0) =—(0+0) = 0.
*A biased bit with p=(0.1,0.9) has H(p) =
0.468996.. 1.0}

—_

In general, the entropy =05 ¢
T

looks as follows as a

function of 0<Pr{X=1}<I:

Pr(X =1)



Entropies g HOXY) =

H(X) M H(Y)

X Y

* The expected entropy of Y after we have observed a
value xeX, is called the conditional entropy H(Y|X)

H(Y[X) = > p(x)-H(Y|X = X)
=-> p(x)- > p(y]x)log p(y[x)

=Y p(x,y)log p(y[x) Also HXTY)

=—E,, 109 p(Y\X)

Chain rule: H(X,Y) = HX)+H(Y|X) = H(Y)+H(X|Y). &



Mutual Information

* For two variables X,Y the mutual information I(X;Y) Is
the amount of certainty regarding X that we learned
after observing Y. Hence I(X;Y) = H(X)—H(X]Y).

* Note that now X and Y can be interchanged using
the chain rule: 1(X;Y)=H(X)-H(X]|Y)
=H(X,Y)—H(Y | X)-H(X]Y)
=H(Y)-H(Y [ X)
=1(Y; X)

* Think of I(X;Y) as the ‘overlap’ between X and Y.



All Together Now

H(X,Y) X Y

Vo

H(X) -
=

s

Sonree



Channel Capacity

The channel capacity C is the
maximum over all possible p(x):

C = max, I(X;Y).

[Cover & Thomas, Section 8.3]:
C>0 and
C <log|X| and C < log|Y| as I(X,Y)<log|X]|, log|Y]|.

11



Some Example Capacities

A noiseless binary channel has
H(X|Y)=0, hence for the mutual 0 .0
Information 1(X;Y)=H(X), which
IS maximized by p(0)=p(1)="-.

Hence C = max, I(X;Y) = 1 bit.

« For a noisy, symmetric binary

channel we have H(Y|X=x)=H(p), 0 0 0
hence 1(X:Y) = H(Y)=H(p). ><
Hence C = max, I(X;Y) is obtained 1

for H(Y)=1 (again p(0)=p(1)=Y2), 1-p
such that C = 1-H(p).
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l1l- Coding algorithms ‘

Discrete source alphabet: X={x,x,,...,x,+ N messages

Entropy H(X) (bits)
ﬁ\@screte channel with alphabet: U={v, u,,...,uy}
Capacity C (bits) D symbols

Often N > D

Coding : x, => codeword : m, = u, U, ... U,

nlny - Un, Nyt length of the codeword

Code mean length =2 PNy
As small as desirable ?... Entropy of codewords

— =

Source with H(X) delivers messages with n"symbols of code:
< log, (D)

Entropy = minimum mean length of binary code

Efficacity E=H(X)/ nlog, (D) Redundancy p=1-E
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CODE PROPERTIES

* A code is non-singular if every element of S, maps into a
different string in D7, i.e., x; # x; = C(x;) # C(x;).

* A code is a uniquely decodable code if its extension is
non-singular.

* A code is a prefix code or an instantaneous code if no
codeword is a prefix of any other codeword.

(no codeword is the beginning of an other)

There exists almost one instantaneous code such that
H(X) /log, (D) < n <HX)/ log, (D) +1 14



INTERNATIONAL MORSE CODE

1. A dash is equal to three dots.

2. The space between parta of the same letier is equat-io one dot,
3. The space hetween two letters is equal to three dots.

4, The space between twe words is equal to five dots,

Aosmm
Bumooo
Comemms
Dumses

Ee
Feomme
Gomune
Hoeosense
Teo

¥ o wom vom mm
Kom o mm
Lemmes
M e -
Nuoue

O mu wm we
Poemmuse
Q o 0w
Roemme
Sees

T o

all codes

Ueomm
Veooum
Woenmom
Xomsomn
Y mm oo e

7 - ———— nonsingular codes

— uniquely decodable codes

1 o o oo e

2¢0 o mmm .
— Instantaneous I:C'd'ES

Seeeummm
4deceemm
LYY YY
GComoooo
Tommmesee

B o oonw e s 8

G e -
0 e o s Jow me
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Huffman codes

* Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length)

® L 2 & L
H(X) Huffman Shannon/ H(X)+1
codes Fano codes

Huffman Algorithm:
1) Arrange source letters in decreasing order of probability (p, 2 p, .. 2 p,)

2) Assign ‘0’ to the last digit of X, and ‘1’ to the last digit of X_,

3) Combine pk and pk-1 to form a new set of probabilities

{P1s P2 s Pras(Pa™ Py}

4) If left with just one letter then done, otherwise go to step 1 and repeat
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Huffman code: an example

Source messages

l Probas
1 A 04 0.4 0.4 04 04 04 ,0.6]0
o001 B 018 018 0.18 .0.19 0.23 _~0.37[0 0.4 1
011 C 0.1 0.1 13 /0.8 /0.19(0 0231
0000 D 0.1 0.1 0.1 0.13[0 0.18(1
0100 E 0.07 0.09 / 01 lo 01 [1
0101 F 0.06 / 0.07(0 0.09(1
00010 G 0.05|0 0.06]1
00011 H 0.04(1

Codewords

Huffman mean length: 2.61
H(X)=2.55 bits thus an efficiency of E=97.8%
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What else ?

Source:
Entropy H(X)
(bits)

ds = 1/T, messages/s

Channel:
Capacity C
(bits)

de = 1/T symbols/s

Can we use

any channel
for

any source ?
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NGCGC theorem

Shannon’s noisy channel-coding theorem shows
that unreliable channels can be used for reliable
communication if we code our messages cleverly.

More specifically, the theorem states that each
(discrete, memoryless) channel has a capacity C'20,
such that each “bits per transmission” rate

R < C’(bits / s)
IS achievable if we use long enough codes.

(Achievable here means that the error probability A"
tends to zero as the length n of the codes grows.)

*
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Once we have a « good » channel,
can we use any code ?

- - d- = 1/T- symbols/s
‘_- nds = n/T, symbols/s ¢ Cy.
nN<de./ds=Ts /T,
Code has to be efficient enough !... And if not ?

Nolseless cocling theorem

Source X={X{,X,,...,xy}- It can be shown: _
There exists a « good » code with mean length n such that

H(X)/log,(D) < n < H(X)/log,(D) + 1

Now code the « source extension » X, = { X;X;...Xq, ..., XpXn---Xn}
\ J

¥ Bloc of k messages
H(X)/log,(D)< 77 <H(X)/log,(D) + 1/k
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Huffman Coding: The Retired Champion

B Replacing an input symbol with a codeword
B Need a probability distribution

B Hard to adapt to changing statistics

B Need to store the codeword table

B Minimum codeword length is 1 bit

Huffman Coding (1952) : optimal code if source statistics known

If unknown, no more optimal ...

Arithmetic Coding: The Rising Star

B Replace the entire input with a single floating-point
number

B Adaptive coding is very easy
B Fractional codeword length

Dictionnary-based coding (Ziv-Lempel and &):

another alternative
B No statistics estimation !




