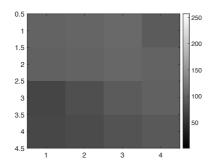


TD Codage Source, C. Mailhes

EXERCICE 1 – CODAGE SANS PERTE

- 1- Soit une source discrète émettant 2 messages de probabilités respectives p et q. Quelle est l'expression de son entropie ? On la notera H(p,q).
- 2- Évaluer l'entropie de la source binaire pour p=0, p=1/2, p=1. Commentaires.
- 3- Quelle est l'entropie d'une source à N messages équiprobables ? Application pour N=8.

EXERCICE 2 – CODAGE SANS PERTE


Soit une source à 3 messages de probabilités : P(a) = 0.6 ; P(b) = 0.3 ; P(c) = 0.1.

- 1- Calculer l'entropie de la source.
- 2- Quelle est l'efficacité d'un code binaire à longueur fixe ?
- 3- Quelle est l'efficacité d'un code binaire d'Huffman?
- 4- Comment peut-on augmenter cette efficacité ?

Compléments: log2(3) = 1.585; log2(0.6) = -0.737; log2(0.3) = -1.737; log2(0.1) = -3.322

EXERCICE 3 - CODAGE AVEC PERTE

On considère le morceau d'image suivant (à gauche l'image, à droite son codage sur 8 bits)

100	102	106	92
98	100	104	100
70	80	92	98
72	76	84	90

On souhaite appliquer du codage DPCM sur cette image.

Rappel: le DPCM consiste à calculer une valeur prédite du pixel $\hat{x}(i,j)$ (i étant le numéro de la ligne de l'image et j le numéro de la colonne), à calculer la différence entre le pixel initial x(i,j) et sa prédiction, et à quantifier cette différence pour la transmettre.

Dans le cas étudié, la prédiction s'écrit :

$$\hat{x}(i,j) = \frac{x(i,j-1) + x(i-1,j)}{2}$$

TD Codage Source, C. Mailhes

Si i = 1 ou j = 1, alors $\hat{x}(i, j) = x(i, j)$ et x(1, 1) est transmis tel quel.

La table de quantification utilisée pour l'erreur de prédiction est celle optimisée par le CCETT (Centre commun d'études de télévision et télécommunications) donnée ci-après

Erreur de prédiction	Valeur quantifiée de e : e _q	Erreur de prédiction	Valeur quantifiée de e : e _q
$-255 \le e \le -70$	- 80	$9 \le e \le 18$	12
$-69 \le e \le -50$	- 58	$19 \le e \le 32$	25
- 49 ≤ e ≤ -33	- 40	$33 \le e \le 47$	39
$-32 \le e \le -19$	- 25	$48 \le e \le 64$	55
-18 ≤ e ≤ - 9	- 12	$65 \le e \le 83$	73
-8 ≤ e ≤ - 3	- 4	$84 \le e \le 104$	93
-2 ≤ e ≤ 2	0	$105 \le e \le 127$	115
$3 \le e \le 8$	4	$128 \le e \le 255$	140

- 1. Calculer la matrice prédite et la matrice d'erreur de prédiction
- 2. Quantifier la matrice d'erreurs de prédiction à l'aide de la table de quantification : les erreurs sont codées sur 4 bits (seulement 16 valeurs possibles).
- 3. Reconstruire l'image (en arrondissant à l'entier supérieur). Quelle est l'erreur moyenne ? Quel est le taux de compression obtenu ?